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An analytical Green’s function is developed to study the acoustic scattering by a flat plate

with a serrated edge. The scattered pressure is solved using the Wiener-Hopf technique

in conjunction with the adjoint technique. It is shown that the kernel decomposition

proposed in recent literature appears only valid at high frequencies. We focus on this

high-frequency regime and obtain the scattered pressure in the form of a contour integral.

We show that such an integral, although complicated, can be evaluated exactly for any

arbitrary piecewise linear serrations, for which closed-form analytical Green’s functions

are obtained. The derivation is validated by performing numerical integration of the

contour integral showing excellent agreement. The Green’s function is shown to agree well

with the numerical results obtained using the finite element method at high frequencies.

The noise directivity patterns are studied as a function of the frequency, serration

amplitude, source position and Mach number respectively. It is found that noise is often

enhanced at low and may be slightly reduced at high observer angles, which may be

understood from the perspective of an extended or removed rigid reflection surface. It

is found that increasing the mean-flow Mach number leads to increasingly evident noise

amplification at side angles, a seemingly strange Doppler behaviour exhibited in source-

fixed coordinate frames. The analytical Green’s function is applicable to both leading- and

trailing-edge scatterings, and is particularly suitable for developing a three-dimensional

trailing-edge noise model that is not only highly efficient but also capable of including

non-frozen turbulence effects.

1. Introduction

Turbulent boundary layer trailing-edge (TE) noise (Howe 1978) refers to the noise

generated when turbulence boundary layers convect past the trailing edge of an aerofoil.

It is a common aeroacoustic source in many applications involving rotating blades such

as wind turbines. It has gained increasingly more attention in recent years, particularly in

the wind industry. This is because the turbine blade size continues to increase, leading to

increasingly large blade tip velocity. It is well known that the power of the aeroacoustic
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noise emission increases quickly as the blade velocity increases, and for modern wind

turbines TE noise has become the dominant noise source (Oerlemans et al. 2009). As

noise regulations become increasingly stringent, TE noise is also expected to become a

regulatory issue for emerging commercial transport such as air taxis, small aerial vehicles

and drones (Jaworski and Peake 2020). Understanding TE noise and its reduction is of

particular importance in these areas.

There have been numerous studies into the techniques of reducing TE noise. Some

notable approaches include using porous aerofoils (Howe 1979; Fink and Bailey 1980;

Geyer et al. 2009a, 2010), trailing-edge brushes (Herr and Dobrzynski 2005), surface

finlets (Clark et al. 2016, 2017) and TE serrations, among which TE serrations repre-

sent a particularly effective way of reducing TE noise without severely compromising

aerodynamic efficiency. The idea of using serrations was inspired by the silent flight

of owls (Jaworski and Peake 2020). Thorpe and Griffin (1962) represents one of the

earliest attempts to measure the aeroacoustic signature of free-flying owls. It was found

that the noise generated by owls could not be detected by their experimental rig in the

ultrasonic frequency range. The noise generated by owls was significantly weaker than

that by other birds of similar sizes, demonstrating the owl’s silent flight capability. Later

experimental studies by Kroeger et al. (1972) and Neuhaus et al. (1973) confirmed that

owls did have a unique flying signature that is quieter than other birds. Consistent fly-over

noise measurements by Sarradj et al. (2011), in conjunction with fixed-wing laboratory

measurement (Geyer et al. 2009b), showed that the silent flying characteristics of owls

may be related to the special features of their wings. One of these features is the wavy or

serrated features around the wing’s leading and trailing edge. The leading-edge serrations

appear to be able to reduce the tip-vortex strength at high angles of attack, whereas TE

serrations reduce the TE noise in approach/gliding flight. This inspires the technique of

installing serrations on the leading and trailing edges of a wing or blade to reduce its

aerodynamic noise.

Extensive research into TE noise suppression using serrations has been conducted in

the past two decades. Numerous experiments show that serrations represent an effective

technique to reduce TE noise. Dassen et al. (1996) conducted wind tunnel measurements

to study the noise reduction effects of serrations on aerofoils and flat plates. It was

shown that significant noise reductions can be achieved in both cases, for example, noise

reductions up to 8 dB and 10 dB were observed for aerofoils and flat plates, respectively.

Maximal noise reductions were shown to occur between 1− 6 kHz. Parchen et al. (1999)

undertook a similar experimental campaign, but on wind turbine blades at both full and

laboratory scales. Similar noise reduction was observed, while noise increase was reported

in the high frequency regime when serrations were misaligned with the flow direction. A

decade later, Oerlemans et al. (2009) conducted field acoustic measurements on full-scale

wind turbine blades using standard, optimized and serrated blades, respectively. It was

shown that the optimized and serrated blades resulted in a noise reduction of 0.5dB
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and 3.2dB respectively for a microphone array placed on the ground. It was found that

most of the noise was produced during the downwash movement of the blades. Gruber et

al. (Gruber et al. 2010; Gruber 2012) performed an extensive array of measurements to

study the noise reduction effects of serrations of varying sizes. The Sound Power Level

(SWL) was obtained by integrating noise intensity along a microphone arc placed in the

mid-span plane. An average reduction of 3-5 dB was reported by using sharp sawtooth

serrations. The noise reduction was found to be related to the change of convection

velocity and turbulence coherence near the serrations. The serrations used by Gruber

(2012) are flat inserts, Chong et al. (2013) on the other hand studied non-flat serrations

by directly cutting aerofoils and found similar noise reductions. However, significant

boundary layer instability tones were also observed in some configurations. Recently,

Leon et al. (2016) studied the effects of serrations under deflected configurations. It was

found that when the serration was aligned with the flow a consistent noise reduction

up to 7 dB was obtained, whereas when the serration was misaligned noise increase

started to appear beyond a critical Strouhal number that scaled with the boundary layer

thickness and freestream velocity. The noise reduction characteristics of serrations when

used specifically on flat plates were studied by Moreau and Doolan (2013) and Chong and

Vathylakis (2015). Effective noise reduction was reported in both studies. For example,

a noise reduction up to 13 dB was recorded by Moreau and Doolan (2013), but this was

shown to be due to the attenuation of vortex shedding. In Chong and Vathylakis (2015), it

was found that little change in the power spectral density and spanwise correlation length

of the surface pressure fluctuations occurred. Instead, a pair of pressure-driven oblique

vortical structures was identified by using conditional-averaging techniques. In recent

years, experiments were conducted to explore the optimal serration shapes, including

for example serrations with double wavelength (Chaitanya et al. 2018), iron-shaped

serrations (Avallone et al. 2017), ogee serrations (Lyu et al. 2019) etc. More details

about these experiments can be found in recent studies (Lyu et al. 2019).

In addition to experiments, numerical simulations are also used to study serrated

TE noise. For example, Jones (Jones and Sandberg 2012) performed a Direct Numerical

Simulation (DNS) of flows around a NACA0012 aerofoil with and without serrations. The

serrations appeared to introduce little change into the turbulent boundary properties and

an effective noise reduction was observed. Sanjosé et al. (2014) also performed a DNS

on a serrated isolated aerofoil and reported a noise reduction of a similar magnitude.

Numerical studies were also performed using the Lattice Boltzmann method by Avallone

et al. (2018), where the link between the far-field noise and the near-field flow parameters

was proposed. In addition to the noise reduction obtained by using conventional sawtooth

serrations, it was shown that combed-sawtooth trailing edges can provide additional noise

reduction benefits.

Both experiments and numerical simulations show that TE serration is indeed an ef-

fective method of reducing TE noise. To use serrations in practical applications, however,
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reliable noise predictions models are essential because they are crucial in the design of

optimal serration geometries (see for example a recent study by Kholodov and Moreau

(2021)). Howe (Howe 1991a,b) is among the earliest researchers to model the aerodynamic

noise generated by serrated trailing edges analytically. A tailored Green’s function was

used to formulate a noise prediction model using the blocked surface pressure statistics

beneath the turbulent boundary layers. However, it was well reported that Howe’s model

significantly overpredicted the noise reduction by using serrations. Later studies (Lyu

et al. 2015, 2016) show that this is due to the Green’s function being inaccurate. In

order to improve the accuracy of TE noise prediction, Lyu et al. (2016) developed a

TE noise model using Amiet’s approach. Instead of using the Green’s function, the

Schwartszchild technique was used in conjunction with Fourier expansion in an iterative

manner to enable analytical progression. The resulting prediction model yielded more

realistic predictions compared to Howe’s model and showed that noise reduction is

achieved mainly through a destructive interference mechanism. The computation of the

model involves the evaluation of nested sums, therefore needs to be optimized so as

to be more suitable when used for serration optimization purposes. Recently Ayton

(2018) developed a model using the Wiener-Hopf technique. The far-field sound was

formulated as two infinite sums and one infinite integral, therefore consuming significant

time when evaluated. However, it was shown (Lyu and Ayton 2019) that the model

can be further developed by evaluating the infinite integral and one of the infinite sums

explicitly, and the resulting simplified model can be computed very efficiently (Lyu and

Ayton 2019). However, the model hinges on the semi-infinite flat plate assumption and

the result is therefore strictly two dimensional. As such, the far-field pressure varies as

1/
√
r instead of 1/r as r → ∞, where r denotes the radial distance of the observer

in the plane perpendicular to the spanwise axis. When compared quantitatively with

experimental data, it is unclear how far the microphone should be placed to the serration

so that both the two-dimensionality and far-field assumption are valid simultaneously.

More importantly, since most practical applications involve rotating blades, where three-

dimensionality is crucial, a 3D accurate model would be necessary in order to obtain the

correct prediction of TE noise for rotating blades.

A classical way to incorporate the 3D effects is to use the two-step approach used

in Amiet’s model (Amiet 1976b), where the surface pressure due to the gust scattering

by a serrated semi-infinite plate is calculated first, and the far-field sound is calculated

subsequently using a surface integral assuming a finite plate. To do that, it is crucial

to obtain the near-field scattered pressure on the plate surface. This poses a great

difficulty as the powerful method of the steepest descent cannot be used to evaluate

the inverse Fourier transform as used in Ayton (2018). Considering acoustic reciprocity,

this is in fact equivalent to calculating the Green’s function for the acoustic scattering

by serrated edges, where the acoustic source, instead of the observer, is placed in

the near field. Obtaining such a Green’s function would enable a TE noise model to
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be developed that is both three-dimensionally accurate and computationally efficient.

Moreover, the Green’s function itself is fundamentally important in many important

aspects concerning TE noise. First, this would open the possibility of examining the

consequences of many assumptions that have been open to heated debate, such as

the validity of frozen turbulence that has been called into question in a number of

recent studies (Ragni et al. 2018; Zhou et al. 2020). Second, the Green’s function

would provide a more intuitive understanding of the effects of serrations by showing

the scattering characteristics of simple sound sources, thereby lending insights into

the physical mechanism of noise reduction by using serrations, and more importantly

informing new techniques of suppressing TE noise. Last but not the least, the Green’s

function would permit a direct comparison between analytical scattering models and

experiments. The point-source induced sound can be readily measured in the laboratory

using laser-induced monopoles. Although TE noise modelling has improved significantly,

it is yet to see robust agreement between trailing-edge noise models and experiments.

This is difficult, especially when realistic aerofoil geometries are considered. Often this

is because the surface pressure statistics needed in the noise prediction model are rather

difficult to be obtained accurately. With a controlled simple acoustic source, we can

readily assess whether any deviations that exist between models and experiments are

introduced by the scattering model and its underlying assumptions or by the turbulent

pressure fluctuations statistics.

Although important, such an analytical Green’s function remains unknown. As men-

tioned above, a tailored Green’s function was proposed by Howe in 1991 (Howe 1991a),

but it has been shown problematic, especially when the serration is sharp. In this paper,

we aim to develop such a Green’s function analytically by using the Wiener-Hopf method.

Due to mathematical symmetry, with proper transformations it would also be applicable

to the scattering by serrated leading edges (Amiet 1975, 1976b; Lyu and Azarpeyvand

2017). This paper is structured as follows. Section 2 introduces the simplified model and

develops the Green’s function. Section 3 validates the Green’s function by performing nu-

merical integrations and Finite Element Method (FEM) computations using COMSOL.

In section 4 we show the noise directivity for a point source located near the serrated

trailing edge of the flat plate due to the use of serrations and examine the effects of varying

the frequency, serration amplitude, source position and Mach number, respectively. The

final section concludes the paper and lists some future work.

2. Analytical derivation

To allow analytical progression, we start from a simplified model that is widely used

in the literature (Howe 1978; Lyu et al. 2016), i.e. the aerofoil is simplified as a flat plate

placed in a uniform flow aligned in the streamwise direction, as shown in figure 1. As

mentioned in section 1, the Green’s function would be applicable to both trailing-edge
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and leading-edge scattering because of mathematical symmetry. In this paper, we use the

trailing-edge scattering as an example. The flat plate is assumed to be semi-infinite, i.e.

the leading edge extends to the upstream infinity and both side edges are also infinitely

far away, so only the serrated trailing edge needs to be considered. We restrict our analysis

to periodic serrations with a wavelength of λ̃. The problem is non-dimensionalized using

the serration wavelength λ̃, the speed of sound c̃ and the fluid density ρ̃. Note we have

used the symbols with a tilde to denote dimensional variables, whereas those without

represent non-dimensional variables. We will adhere to this convention throughout this

paper unless explicitly noted otherwise. In terms of the non-dimensional variables, the

serration has a wavelength 1 and half root-to-tip amplitude h, and the uniform flow from

left to right has a dimensionless velocity M , which is just the Mach number.

A Cartesian coordinate system shown in figure 1 is used in the analysis, where x1, x2,

and x3 denote the dimensionless streamwise, spanwise, and normal-to-plate coordinates,

respectively. In such a coordinate system, the profile of the serration, or the trailing edge

of the plate, can be described by the periodic function x1 = hF (x2), where F (x2) obtains

a maximum value of 1 and a minimum value of −1, respectively. Under the harmonic

assumption of e−iωt, where ω is the non-dimensionalized angular frequency, the Green’s

function G(x;y, ω) satisfies the following inhomogeneous convective equation (Amiet

1976a; Lyu et al. 2016)(
β2 ∂

2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

+ 2ikM
∂

∂x1
+ k2

)
G(x;y, ω) = δ(x− y), (2.1)

and the boundary condition

∂G

∂x3

∣∣∣∣
x3=±0

= 0, x1 < hF (x2) (2.2)

where, β =
√

1−M2 and k = ω/c, and as shown in figure 1, y denotes the source

position, while x denotes the observer position.

Note the observer location x is often in the far field, therefore a standard technique

is to use the reciprocal theorem to calculate the adjoint Green’s function Ga(y;x;ω) ≡
G(x;y, ω) so that the advantage of a plane wave incidence can be taken. However, as

we aim to include the mean-flow convection effect in this paper, i.e. M 6= 0, (2.1) is

no longer self-adjoint. In other words, the adjoint Green’s function Ga(y;x, ω) does not

satisfy (2.1). Nevertheless, it can be shown that the equation that Ga(y;x, ω) does satisfy

differs from (2.1) only by the sign in front of the term 2ikM ∂
∂x1

, i.e.(
β2 ∂

2

∂y2
1

+
∂2

∂y2
2

+
∂2

∂y2
3

− 2ikM
∂

∂y1
+ k2

)
Ga(y;x, ω) = δ(y − x). (2.3)

Physically, this is equivalent to solving the acoustic pressure at y while the point source

is at x, assuming a uniform flow of Mach number M travels from right to left. In other

words, the problem can be cast as “reciprocal” by reversing the uniform mean flow.

Because x is in the far field, the incidence wave from the source x can be approximated
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Figure 1: Schematic illustration of the Green’s function problem. The source represented

by the black dot in the diagram is located near the edge at y, and the observer is located

in the far field at x.

by a plane wave, whose amplitude depends on the distance between x and y. Because of

linearity, we can start with an incident wave of magnitude 1, i.e.

pin = e−ik1y1/βe
i kM
β2

y1e−i(k2y2+k3y3), (2.4)

where k1 and k2 are constants related to the radiation angle, the precise definition of

which will be given later, and k3 =
√

(k/β)2 − k2
1 − k2

2. It can be verified that (2.4)

satisfies the homogeneous version of (2.3). We decompose the total adjoint pressure field

Ga = pin+pr +Rs, where the hypothetically reflected wave pr off an infinite flat plate is

defined as pr = pin(y1, y2,−y3) and Rs is the reflection-removed scattered pressure field.

We could also have decomposed the pressure field as Ga = pin +Gs, and this approach

is shown in Appendix B. Note however no matter which decomposition is used, it should

in no way affect the final solution.

The reflection-removed scattered wave Rs satisfies

β2 ∂
2Rs
∂y2

1

+
∂2Rs
∂y2

2

+
∂2Rs
∂y2

3

− 2ikM
∂Rs
∂y1

+ k2Rs = 0, (2.5)

and the following boundary conditions due to the periodicity of the serrations (Ayton

2018),

∂Rs
∂y3

∣∣∣∣
y3=0

= 0, y1 < hF (y2); (2.6a)

Rs|y3=0 = −e−ik1y1/βe
i kM
β2

y1e−ik2y2 , y1 > hF (y2); (2.6b)

Rs|y2=0 = Rs|y2=1 eik2 ; (2.6c)

∂Rs
∂y2

∣∣∣∣
y2=0

=
∂Rs
∂y2

∣∣∣∣
y2=1

eik2 . (2.6d)
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Eliminating the first-order term in (2.5) by the transformation Rs = R̄se
ikMy1/β

2

, we

obtain

β2 ∂
2R̄s
∂y2

1

+
∂2R̄s
∂y2

2

+
∂2R̄s
∂y2

3

+

(
k

β

)2

R̄s = 0. (2.7)

Earlier work (Ayton 2018) often uses the non-orthogonal coordinate transformation ξ1 =

(y1 − hF (y2))/β, ξ2 = y2 and ξ3 = y3 to enable the use of separation of variables.

We show that this coordinate transformation is not necessary and the same Wiener-Hopf

equation can be obtained by using the Fourier transform directly. We follow this approach

here. Introducing the stretched coordinate ξ1 = y1/β, ξ2 = y2, ξ3 = y3, we see that the

governing equation reduces to

∂2R̄s
∂ξ2

1

+
∂2R̄s
∂ξ2

2

+
∂2R̄s
∂ξ2

3

+ k̄2R̄s = 0, (2.8)

where the stretched constants are defined as k̄ = k/β. Now the boundary conditions read

∂R̄s
∂ξ3
|ξ3=0 = 0, ξ1 < h̄F (ξ2); (2.9a)

R̄s|ξ3=0 = −e−i(k1ξ1+k2ξ2), ξ1 > h̄F (ξ2); (2.9b)

R̄s|ξ2=0 = R̄s|ξ2=1eik2 ; (2.9c)

∂R̄s
∂ξ2
|ξ2=0 =

∂R̄s
∂ξ2
|ξ2=1eik2 , (2.9d)

where h̄ is defined as h̄ = h/β. We can now perform the Fourier transform along the ξ1

direction, i.e.

R(s, ξ2, ξ3) =

∫ ∞
−∞

R̄s(ξ1, ξ2, ξ3)eisξ1d ξ1. (2.10)

Function R(s, ξ2, ξ3) can be decomposed into two parts, i.e.

R(s, ξ2, ξ3) =

∫ h̄F (ξ2)

−∞
R̄s(ξ1, ξ2, ξ3)eisξ1d ξ1 +

∫ ∞
h̄F (ξ2)

R̄s(ξ1, ξ2, ξ3)eisξ1d ξ1

=

∫ 0

−∞
R̄s(ξ1 + h̄F (ξ2), ξ2, ξ3)eis(ξ1+h̄F (ξ2))d ξ1 +

∫ ∞
0

R̄s(ξ1 + h̄F (ξ2), ξ2, ξ3)eis(ξ1+h̄F (ξ2))d ξ1

= eish̄F (ξ2)
(
R−(s, ξ2, ξ3) +R+(s, ξ2, ξ3)

)
(2.11)

where functions R− and R+ are complex functions that are analytical in the lower and

upper half s planes, respectively. A similar Fourier transform (and decomposition) is

applied to the function ∂R̄s/∂ξ3, the result of which will be denoted by R′ in the rest of

the paper.

Equation (2.8) then reduces to

∂2R
∂ξ2

2

+
∂2R
∂ξ2

3

+ (k̄2 − s2)R = 0. (2.12)

Equation (2.12) is the standard Helmholtz equation and its solution can be found through

the usual method of separation of variables. After using the last two boundary conditions

shown in (2.9), we show that (2.12) can be solved for ξ3 > 0 (the corresponding result
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for ξ3 < 0 is similar due to antisymmetry) to yield

R(s, ξ2, ξ3) =

∞∑
n=−∞

An(s)e−γnξ3eiχnξ2 , (2.13)

where χn = 2nπ − k2, γn =
√
s2 − κ2

n, and κn =
√
k̄2 − χ2

n. We see that κn denotes the

wavenumber in the ξ1 − ξ3 plane and when n = 0 it is equal to
√
k2

1 + k2
3 . The complex

function An(s) will need to be determined by making use of the first two boundary

conditions shown in (2.9) by using the Wiener-Hopf method, i.e.

R′(s, ξ2, 0) = eish̄F (ξ2)
∞∑

n=−∞
R′+n (s)e−ish̄F (ξ2)eiχnξ2 ; (2.14a)

R(s, ξ2, 0) = eish̄F (ξ2)

( ∞∑
n=−∞

R−n (s)e−ish̄F (ξ2)eiχnξ2 − i

s− k1
e−i(k1h̄F (ξ2)+k2ξ2)

)
,(2.14b)

where R′+n (s) and R−n (s) are the expansion coefficients of functions R′+(s, ξ2, 0) and

R−(s, ξ2, 0) using the basis functions e−ish̄F (ξ2)eiχnξ2 , n = 0,±1,±2..., and they are

unknown at this stage. The last exponential term in the parenthesis of (2.14b) can also

be expanded and the resulting coefficients are denoted by En(s). En(s) can be found to

be

En(s) =

∫ 1

0

ei(s−k)h̄F (ξ2)e−i2nπξ2d ξ2. (2.15)

Note that En(s) can be arbitrary because no restriction on F (ξ2) has been imposed

apart from it being periodic. For any arbitrary piecewise linear functions, En(s) can

be integrated analytically. For example, for the conventional sawtooth serration profile

defined by (in one period)

F (ξ2) =

4ξ2, − 1
4 < ξ2 <

1
4

−4ξ2 + 2, 1
4 < ξ2 <

3
4 ,

(2.16)

En(s) can be found as

En(s) =
4(s− k1)h sin

(
(s− k1)h− nπ/2

)
4(s− k1)2h

2 − n2π2
. (2.17)

Upon comparing (2.13) and (2.14) and making use of orthogonality of the basis

functions e−ish̄F (ξ2)eiχnξ2 , n = 0,±1,±2..., we arrive at the following matching conditions

for mode n, i.e.

−γnAn(s) = R′+n (s), (2.18a)

An(s) = R−n (s)− i

s− k1
En(s). (2.18b)

We can proceed by eliminating A(s) and arrive at the Wiener-Hopf equation

γn

(
R−n (s)− i

s− k1
En(s)

)
+R′+n (s) = 0. (2.19)

The function En(s) causes much difficulty in the kernel decomposition. Recent ap-



10 B. Lyu

proach (Ayton 2018) assumes that both R−n (s) and R′+n (s) contain the factor En(s) so

that a kernel factorization can proceed. However, we find that this assumption appears

not true, in particular this leads to results that do not strictly satisfy the boundary

conditions. Moreover, as mentioned above, the results obtained by decomposing the total

pressure field as either Ga = pin + Gs or Ga = pin + pr + Rs should yield no difference

to the final solution. However, it can be verified that if the assumption that En(s) is

a factor in R−n (s) and R′+n (s) is used, the two methods would yield different solutions

(the two are only equal to each other for mode n = 0, see Appendix D for details),

which signals a potential problem with the underlying assumption. In fact, from (2.9)

and (2.14) we see that En(s) represents the variation of the incident pressure on the

edge. As R−n (s) denotes the scattered pressure upstream of the trailing edge, if R−n (s)

had the same En(s) factor as the incident wave, the scattering problem would need to

be homogeneous in the spanwise direction. This can only be guaranteed if the trailing

edge is a straight (or swept) edge. For serrated edges, the homogeneity condition is not

satisfied and the En(s) variation in R−n (s) cannot be guaranteed.

However, as the frequency increases, the acoustic wavelength becomes increasingly

short, and the scattered pressure variation on the edge is expected to become increasingly

localized and dominated by the incident phase variation; the assumption of En(s)

dependence may be approximately valid in the high frequency limit. Serrations are

known to be more effective as frequency increases (see for example Howe (1991a), Gruber

(2012) and Lyu et al. (2016)), and more importantly, it is the hydrodynamic wavelength

that characterises the incoming (gust) length scale in TE noise modelling, the localized

scattering is more likely to be valid. Therefore, in the following part of this paper we

focus on this high frequency regime aiming to develop a closed-form analytical Green’s

function, which can be used to develop a three-dimensional TE noise model.

The kernel is the standard γn =
√
s2 − κ2

n, and once En(s) is removed from both

R−n (s) and R′+n (s) it becomes a routine procedure to be factorised as
√
s− κn

√
s+ κn.

An(s) can then be approximated by

A(s) = − 1

γn
R′+n (s) = − i√

s− κn

√
k1 − κn
s− k1

En(s) (2.20)

Substituting (2.20) into (2.13) and taking the inverse Fourier transform yields

R̄s(ξ1, ξ2, ξ3)) =

∞∑
n=−∞

−i(
√
k1 − κn)eiχnξ2

1

2π

∫ ∞
−∞

En(s)

s− k1

1√
s− κn

e−isξ1−γnξ3d s.

(2.21)

Let r =
√

(y1/β)2 + y2
3 , and cos θ = y1/(βr), we have finally

Rs(r, θ, y2) =
1

2π
eikMy1/β

2
∞∑

n=−∞
−i(
√
k1 − κn)eiχny2

×
[∫ ∞
−∞

En(s)

s− k1

1√
s− κn

e(−is cos θ−γn sin θ)rd s

]
, (2.22)
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Figure 2: The integral path P in (2.22), which passes around a simple pole at s = k1

and two branch points at s = ±κn. Note the branch point κn can be an imaginary

number depending on the value of n, which however does not affect the analyticity of the

integrand along the integral path. The integral along path P is equivalent to that along

P0 minus a residue contribution around s = k1.

where En(s) is given by (2.15), and the integral is along the path P shown in figure 2. Note

that the integrand in (2.22) has a pole at s = k1 and two branch points at s = ±κn. The

integral path P has to pass above the pole at s = k1 due to the analyticity requirement.

It is, however, equivalent to integrating (2.22) along the path P0 shown in figure 2,

provided that the residue contribution from the pole is subtracted. We see from (2.17)

that En(k1) = δn1
, therefore it is convenient to calculate the residue, which is precisely the

hypothetical reflected wave off an infinite flat plate pr. Consequently, the total scattered

field Gs can be directly calculated by integrating (2.22) along the path P0 instead, i.e.

Gs(r, θ, y2) =
1

2π
eikMy1/β

2
∞∑

n=−∞
−i(
√
k1 − κn)eiχny2

×
[∫ ∞
−∞

En(s)

s− k1

1√
s− κn

e(−is cos θ−γn sin θ)rd s

]
, (2.23)

where the integral path in (2.23) is given by P0 as shown in figure 2.

To obtain a closed-form analytical Green’s function, the integral in (2.23) has to be

evaluated analytically. Note that En(s) is arbitrary, but for all piecewise linear serration

profiles En(s) can be evaluated analytically. If the far-field scattered pressure is of

interest, i.e. r → ∞, (2.23) can be quickly evaluated asymptotically by the powerful

method of the steepest descent, as shown by Ayton (2018). However, as we seek the

Green’s function, it is the near-field scattered pressure that is of our interest. The steepest

descent method can no longer be used, and the contour integral in (2.23) must be

integrated exactly. We show that for all piecewise linear profiles, the above complex

contour integral can be integrated exactly to yield closed-form analytical solutions.

We use the conventional sawtooth serration as an example in the rest of the paper,
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Figure 3: The definition of the two geometrical angles θt and θr and their corresponding

radial coordinates rt and ri.

whereas the Green’s functions for other common piecewise linear functions are given in

Appendix C.

We begin by noting that for conventional sawtooth serrations, En(s) are given by

(2.17), in which the sine functions can be expanded using exponential functions. To

facilitate a compact notation, we define two auxiliary local polar coordinate frames, i.e.

(rt, θt) and (rr, θr) in the stretched y1/β − y3 plane (i.e. ξ1 − ξ3 plane), as shown in

figure 3. Here the stretch factor β is to account for the background uniform flow, and

when M = 0 the stretched plane is just the physical y1 − y3 plane. We see that θt and

θr represent the geometric angles of the observer with respect to the tip and root of the

serration in the stretched y1/β − y3 plane, respectively, while rt and rr represent their

corresponding radial coordinates, respectively. With these definitions, we can obtain

rt =
√
r2 + h̄2 − 2rh̄ cos θ, (2.24a)

θt = arccos
[
(r cos θ − h̄)/rt

]
. (2.24b)

And similarly we have

rr =
√
r2 + h̄2 + 2rh̄ cos θ,

θr = arccos
[
(r cos θ + h̄)/rr

]
.

Expanding the sine functions in (2.17) into exponential functions, we can show that

Gs(r, θ, y) =
1

2π
eikMy1/β

2
∞∑

n=−∞
−i(
√
k1 − κn)eiχny2

×
(

exp
(
−i(k1h̄+

nπ

2
)
)
Hn(rt, θt)− exp

(
i(k1h̄+

nπ

2
)
)
Hn(rr, θr)

)
, (2.25)
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where

Hn(ri, θi) =

∫ ∞
−∞

−2ih

(2(s− k1)h)2 − (nπ)2

1√
s− κn

e(−is cos θi−γn sin θi)rid s (2.26)

and (ri, θi) can take the value of either (rt, θt) or (rr, θr).

To integrate (2.26), when n 6= 0 we may expand the first factor of the integrand as

partial fractions, i.e.

−2ih

(2(s− k1)h)2 − (nπ)2
= − ih

nπ

[
1

2(s− k1)h− nπ
− 1

2(s− k1)h+ nπ

]
. (2.27)

Equation (2.26) can then be written as the difference between two integrals, i.e.

Hn(ri, θi) = − i

2nπ

[
D+
n (rk, θi)−D−n (rk, θi)

]
(2.28)

where

D±n (rk, θi) =

∫ ∞
−∞

1

s− (k1 ± nπ/2h)

1√
s− κn

e(−is cos θi−γn sin θi)rid s. (2.29)

We see from (2.29) that the presence of the serration introduces a modulated stream-

wise wavenumber of k1 ± nπ/2h̄ in the solution. Physically, this can be understood as

follows. The presence of the periodic serration modulates the wavenumber of the incoming

plane wave. The incoming plane wave has a spanwise wavenumber of k2, consequently the

nth mode of the scattered pressure has a spanwise wavenumber of k2−2nπ, where n is an

integer. Because the serration extends in both y1 and y2 directions, the scattered pressure

along the edge varies in both y1 and y2 directions. Therefore, the streamwise wavenumber

must be modulated simultaneously in a similar way as the spanwise wavenumber. Because

the half wavelength (one tooth) and root-to-tip amplitude of the serration are 1/2 and 2h,

respectively, the nth-order plane wave would have corresponding modulated streamwise

wavenumbers of k1 + nπ/2h and k1 − nπ/2h, due to the presence of the left and right

teeth, respectively. Therefore, each spanwise mode (nth for example) corresponds to two

equally weighted plane waves, one with a streamwise wavenumber of k1 +nπ/2h and the

other with k1 − nπ/2h. We can define two geometrical angles representing the effective

incident angles in the y1/β − y3 plane for the two plane waves, i.e.

Θ±n = arccos
k1 ± nπ/2h̄

κn
, (2.30)

where n is an integer. Clearly, for n = 0 both Θ+
0 and Θ−0 reduce to Θ0 ≡ arccos k1/κ0

representing the incident angle of pin.

To evaluate (2.29), we deformed the integration path P0 shown in figure 2 to the curve

P1+P2+P3 shown in figure 4. The path P2 is described by s = −κn cos(θi+it), where the

real number t varies from +∞ to −∞. Figure 4 shows that s→∞ in the second quadrant

as t → +∞, whereas as s → ∞ in the third quadrant t → −∞. It can be shown that

integration along P1 and P3 approaches 0 as |s| → ∞. Therefore the integral in (2.29) can

be evaluated along P2 instead provided P2 pass the simple pole from below. Because the
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Figure 4: The deformed path P1+P2+P3, where P2 is described by the s = −κn cos(θi+it)

as t varies from +∞ to −∞. When t = 0 the path P2 intersects with the real axis at

−κn cos θi. When −κn cos θi > k1 as shown above, the simple pole is crossed, and a

residue contribution must be included. The case when κn is imaginary is similar.

deformed path P2 intersects with the real axis at −κn cos θi, such condition is met when

−κn cos θi < k1, i.e. when θi > π − arccos(k1/κn). When 0 < θi < π − arccos(k1/κn),

we can show that a residue contribution must be added. However, this pole contribution

is exactly cancelled by the jump in the resulting integral and the final solution takes

the same form as that for θi > π − arccos(k1/κn) (see Chapter 2 of Noble (1958) for

detail). Therefore, in the rest of the paper we choose not to distinguish the two cases. By

deforming the integral along P2 and making use of the definition of (2.30), (2.29) reduces

to

D±n (ri, θi) = −
√

2

κn

∫ ∞
−∞

sin 1
2 (θi + it)

cos(θi + it) + cosΘ±n
eiκnri cosh td t. (2.31)

Equation (2.31) can be integrated analytically to yield (see Appendix A for more details)

D±n (ri, θi) = −π
√

2

κn

I(κnri, θi;Θ
±
n )

sin 1
2Θ
±
n

, (2.32)

where function I(kr, θ;Θ) is the classical Fresnel solution denoting the pressure field

scattered by a straight trailing edge (Noble 1958), i.e.

I(kr, θ;Θ) =
e−iπ4
√
π

[
e−ikr cos(Θ+θ)F (

√
2kr cos

Θ + θ

2
)− e−ikr cos(Θ−θ)F (

√
2kr cos

Θ − θ
2

)

]
.

(2.33)

The Fresnel integral F (x) in (2.33) is defined as

F (x) =

∫ ∞
x

eiu2

du (2.34)
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and can be conveniently computed using the standard error function.

Having obtained the analytical result of D±n (ri, θi), it follows that

Hn(ri, θi) =
i√

2κnn

(
I(κnri, θi;Θ

+
n )

sin 1
2Θ

+
n

− I(κnri, θi;Θ
−
n )

sin 1
2Θ
−
n

)
(2.35)

where as mentioned above the subscript i take the value of either t or r. Note that in

(2.35), Hn(ri, θi) decays at least as fast as n−3/2 as n → ∞, and because n appears in

the denominator, (2.35) works only for n 6= 0. However, if treating n as real variable,

we may obtain the result for n = 0 by taking the limit as n → 0. To facilitate practical

computations, we also derive an explicit formula for H0(ri, θi) from (2.26). This can be

found in Appendix B.

Substituting (2.35) into (2.25), the total scattered pressure Gs can be readily evaluated.

The important fact is that (2.25) is an exact evaluation of (2.23), and therefore is not

only valid in the far field, but also in the near field. When r →∞, (2.25) would recover

the far-field approximation obtained using the steepest descent method by Ayton (2018).

Note again that (2.35) consists of the standard Fresnel solution describing the scattered

field by a straight edge. This suggests that the pressure field scattered by the sawtooth

edge is equivalent to the sum of the Floquet modes scattered by two imagined semi-

infinite flat plates with their straight trailing edges located at the tip and root of the

serration, respectively. This appears to be somewhat consistent with a number of previous

findings showing that noise generation by serrated edges is dominated by the root or tip

regions (Kim et al. 2016; Turner and Kim 2017; Avallone et al. 2018). This view, however,

results from the use of the En(s) assumption and is therefore not exact. Because (2.17)

is used in the derivation, (2.25) is therefore only valid for sawtooth serrations; however,

as mentioned earlier we can easily obtain analytical Green’s functions for any arbitrary

piecewise linear serration profiles. Appendix C contains the Green’s functions for other

serration profiles, such as the square shapes.

When a point source is located at x, i.e. (x1, x2, x3), the incident plane wave near the

serration has an amplitude of

A(x) = − 1

β

1

4πR
eikR/βe

−i kM
β2

x1 , (2.36)

where R =
√

(x1/β)2 + x2
2 + x2

3. Furthermore, the value of k1 and k2 in the definition of

pin can be found to be

k1 =
k

β

x1/β

R
, k2 =

k

β

x2

R
. (2.37)

By linearity, the Green’s function can be readily obtained as

G(x;y, ω) = Ga(y;x, ω) = A(x) (pin +Gs) , (2.38)

where pin is shown in (2.4) and Gs is given by (2.25). Equation (2.38) is the fundamental

equation of this paper. It can be seen that the Green’s function consists of two terms;

the first term A(x)pin represents the sound propagating directly from the source y to
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Figure 5: Comparison of the scattered pressure field |Gs| on (a) y2 = 0, y3 = 0 and (b)

y1 = 0 and y3 = 0. The serration amplitude is h = 10, the wavenumber is k = 1, the

Mach number M = 0 and the observer angle Θ0 = 3
4π.

the observer x, while the second term A(x)Gs represents the scattered pressure off the

serrated plate then propagating to the observer x. The direct propagating sound is

trivial and most importantly does not depend on the serration profiles, therefore it is

the scattered part that we are interested in.

3. Validation

We see from section 2 that in order to obtain the analytical Green’s function, con-

siderable algebra is involved. Therefore, it is necessary to validate the result before the

Green’s function is used to study the scattering characteristics. In this section, we choose

to validate the Green’s function using two approaches. The first is to numerically integrate

(2.23) so as to ensure that the complex analytical evaluation of the integral is correct.

The second approach is to make use of the FEM technique to compute the scattered

pressure under the incident wave shown in (2.4) using COMSOL so as to examine to

which extent the assumption regarding En(s) serves as a good approximation.

Figure 5 shows a comparison between the scattered pressure |Gs| obtained by the

numerical integration and from (2.25). As can be seen from figure 5(a), the scattered

pressures obtained using the two approaches completely collapse along the line of y2 = 0

in the plane of the flat plate. Similarly, the scattered pressure obtained by numerical

integration along the line of y1 = 0 in the flat plate plane is identical to that from

(2.25). Pressure values at other locations show exactly the same agreement. This excellent

agreement shows that the analytical evaluation of the contour integral in the complex s

domain is indeed correct and exact.

Although figure 5 shows that the analytical derivation from (2.23) to (2.35) is correct,

it cannot show to what extent (2.38) approximates the exact solution to (2.1). This is



Scattering Green’s function for a flat plate with a serrated edge 17

Figure 6: Scattered pressure field Gs (only real part is shown) from FEM simulations,

where M = 0, h = 2, k = 10 and Θ = π/4. A small imaginary part of k is used to

improve the PML accuracy.

because (2.23) is based on the assumption of En(s), and to examine its validity we need

to use FEM to numerically calculate the scattered pressure so that a direct comparison

between the numerical and analytical Green’s functions can be made. We again choose

to compare the near-field |Gs| under the incident wave shown in (2.4).

The commercial software COMSOL is used to conduct the numerical simulation, the

computational domain of which is shown in figure 6. We can see that a half-cylindrical

domain consisting of one serration wavelength is used. The semi-infinite plate is placed

on the left-hand side of the bottom surface, as shown in figure 6. Periodic boundary

conditions are used between the front and back surfaces. Perfectly Matched Layers (PML)

are attached to the outer side of the domain to absorb the scattered pressure due to a

plane wave incidence prescribed by (2.4). The PML works well for absorbing sound

scattered off a finite object, but starts to become less accurate to simulate a flat plate

that is semi-infinitely long. To improve the accuracy of the PML, a small imaginary

part of k (in this paper arg k ≈ −0.02) is used so that the scattered pressure decays

gradually as it propagates. When compared against analytical results, the same k is used

in (2.25). This is permissible and can be shown conveniently by analytical continuation.

Free tetrahedral mesh is used and the resulting case has up to 4 millions degrees of

freedom at the highest dimensionless frequency k. Grid independence is examined by

using increasingly fine meshes that result in little change in the calculated pressure field.

The scattered near-field pressure is evaluated along two semicircles shown in blue in

figure 7. The two semicircles have a dimensionless radius of 1 and are located in the

y2 = 0 and y2 = 0.75 planes, respectively. In the rest of this paper, they are referred to

as the SC 1 (y2 = 0) and SC 2 (y2 = 0.75), respectively. In the FEM computation, the

serration amplitude h, the frequency k and the incident angle Θ can all be varied. To
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Figure 7: Two semicircles of radius 1 denote the probe locations on which two scattered

pressure are compared between the FEM and the analytical formula. The front semicircle

is at y2 = 0 while the back one is at y2 = 0.75.

facilitate comparison, the scattered pressure by a straight trailing edge is also computed

and evaluated on the same semicircles.

Figure 8 shows the comparison of the scattered pressure calculated by the FEM

technique and the analytical Green’s function at M = 0 and Θ = π/4. The scattered

pressure values from both the straight (blue) and serrated (red) edges at various non-

dimensional frequencies are shown. Figure 8(a-b) shows the results when k = 2, from

which we can see that the computed pressure distribution for straight edges agrees

excellently with the analytical prediction. This ensures that the PML works satisfactorily

and the grid is sufficiently fine to resolve the pressure field. On the other hand, the

computed scattered pressure for serrated edges is significantly smaller than the analytical

prediction. This is expected, as the assumption about En(s) dependence is not expected

to be valid at this frequency. As mentioned in section 2, as the frequency increases the

scattering becomes increasingly localized and the assumption is more likely to be valid.

This is indeed the case, as shown in figure 8(c-d). We can see that the baseline results

continue to agree excellently with analytical predictions, but the serrated results are now

in better agreement with the analytical prediction with slight deviation at large angles.

In particular, figure 8(d) shows a significant change in the near-field directivity shape

on SC2 due to the use of serrations, and the Green’s function can capture this change

well apart from the small magnitude deviation at large observer angles. As the frequency

increases to k = 50, figure 8(e-f) shows that the scattered pressure obtained using the

two methods agree well with each other both in terms of the shape and amplitude of the

directivity patterns.

Figure 9 shows the comparison between the scattered pressure when the incident angle

Θ = 3/4π for both the baseline and serrated trailing edges. When the incident angle
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Figure 8: Comparison of the analytical and FEM-calculated Green’s function at M = 0

and Θ = π/4 for both baseline and serrated (h = 1) trailing edges on the first (SC 1)

and second (SC 2) semicircles at various frequencies.

Θ = 3/4π, the directivity patterns of the scattered pressure are significantly different

from those at Θ = π/4. Nevertheless, figure 9(a-b) still clearly shows the discrepancy

between the FEM and analytical results for serrated edges, while figure 9(c-d) shows that

the agreement is fairly good. Again at the highest frequency k = 50, the two lines virtually

collapse, as shown in figure 9(e-f), indicating good agreement between the analytical and

calculated Green’s functions.

In summary, we see that the analytical Green’s function approximates the exact

Green’s function reasonably well at high frequencies. A rule of thumb for the valid

regime may be taken as kh > 10. It is, however, worth noting that the incident plane

wave is by no means limited to propagative waves. Because of analytical continuation,

the Green’s function must also work for evanescent waves, such as the plane-wave gusts

used in TE noise modelling using Amiet’s approach. In such cases, the convective Mach
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Figure 9: Comparison of the analytical and FEM-calculated Green’s function at M = 0

and Θ = 3π/4 for both baseline and serrated (h = 1) trailing edges on the first (SC

1) and second (SC 2) semicircles at various frequencies. Legends are the same as those

shown in figure 8.

number of the gust is typically low and therefore it is the hydrodynamic wavenumber

k1h that determines how localized the scattering is. Considering that this hydrodynamic

wavenumber is often much larger than the acoustic wavenumber, especially for low

Mach number applications, the En(s) assumption would be more likely to hold so that

(2.25) may be used to develop a three-dimensional TE noise prediction model. Note

that although (2.25) appears complex, it can be simplified considerably when used to

model TE noise because both Θ and θi are equal to π/2 in the scattered surface pressure

calculation. Therefore, it can be expected the resulting model can be cast into a relatively

compact form that facilitates efficient evaluation.
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4. Results and Discussions

Having validated the analytical Green’s function, we are now in a position to examine

its far-field radiation characteristics and the effects of varying the frequency, serration

amplitude, sound source position and Mach number respectively using (2.38). As shown

in section 2, (2.38) consists of a directly propagating incident part and a scattered part.

In the rest of this section, we only examine the scattered part of Green’s function, i.e.

A(x)Gs shown in (2.25), because it is the scattered part A(x)Gs that is related to

the serration geometry, whereas the incident part remains unchanged no matter how

the serration changes. To study the effects of the frequency, the non-dimensionalized

wavenumbers k = 10 and k = 50 are chosen because section 3 shows that the Green’s

function serves as a reasonably good approximation to the exact solution at these

frequencies. In the rest of this section, the far-field directivity patterns at k = 10 and

k = 50 are shown simultaneously when the serration amplitude, source position and

Mach number vary. To account for the pressure decay due to sound propagation, the

scattered pressure in (2.38) is scaled by 4π|x| so that

Gscaled = − 1

β

|x|
R

eikR/βe
−i kM

β2
x1Gs (4.1)

is used to plot the directivity patterns. In the following directivity plots, the observer

position is chosen to be |x| = 100 away from the coordinate origin in the x2 = 0 plane.

From (4.1), we see that |Gscaled| = |Gs||x|/βR, therefore choosing values other than 100

does not change the directivity shape and magnitude in the plane x2 = 0.

4.1. Effects of the serration amplitude

We first study the effects of varying the serration amplitude on the scattering charac-

teristics. As a starting point we let M = 0 so that β = 1, i.e. the stretched coordinates

are just the physical coordinates in the definition of Gs. We choose three serration

lengths, i.e. h = 1, h = 2 and h = 5, and have their scattered far-field directivity

|Gscaled| plotted in figure 10. The directivity plots for their corresponding straight-edge

scattering are also included for reference. In all these plots we fix the source position

at (cosπ/4, 0.25, sinπ/4). From figure 3 it can be seen that y2 = 0.25 is the plane that

passes the serration tip. From the rest of the paper, we refer to it as the tip plane, whereas

y2 = 0.75 similarly referred to as the root plane. Figure 10(a-b) shows the directivity

patterns for a serration amplitude of h = 1. This represents a relatively wide serration.

Note we do not consider serrations wider than this, i.e. serrations with very small h values,

because that would result in very small kh values that invalidate the En(s) assumption.

This however does not pose much restriction on its applications, because it is widely

known that serrations with very short amplitude have little effect on reducing TE noise.

We see from figure 10(a) that compared to the baseline results, the scattered pressure is

slightly weaker at large observer angles, i.e. Θ > 135◦, but slightly stronger at others.

As the frequency increases to k = 50, we see a more pronounced radiation enhancement
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Figure 10: Far-field directivity patterns of the scattered pressure due to the baseline and

serrated edges of different sizes. The source is located at r = 1 and θ = π/4 in the

y2 = 0.25 plane (passing the serration tip).

when Θ < 135◦ and an increasingly less obvious noise suppression at large observer

angles. Besides, both the baseline and serrated directivity patterns exhibit lobes resulting

from interference between the geometrically-reflected and scattered pressure fields.

As the amplitude of the serration increases, this tendency becomes increasingly evident,

as shown in figure 10(c-d), where directivity patterns for serrations of h = 2 are shown.

Figure 10(e-f) shows the directivity patterns when h = 5. This represents a rather long

serration, and we see that the general behaviour of the scattered pressure remains similar

to serrations of h = 2. The difference is that the low-angle enhancement is more evident,

in particular when Θ < 135◦. For the long serration shown in figure 10(e-f), we see that

the directivity shapes are significantly different from that of straight edges. This may be

understood as follows. When the amplitude of the serration increases, the additional area

of the serration extended downstream can act as an effective reflection surface for the
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Figure 11: Far-field directivity patterns of the scattered pressure due to the baseline and

serrated edges of different sizes. The source is located at r = 1 and θ = 3π/4 in the

y2 = 0.25 plane (the serration tip plane).

nearby source when the observer is at low observer angles. From the directivity plots it

manifests itself as large noise radiation or even an additional lobe, as shown in figure 10(a-

f). For example, because the sound source is at θ = π/4 in the tip plane in figure 10, the

geometrically reflected acoustic wave would only exist in the range of 135◦ < Θ 6 180 for

the baseline flat plate. The scattered pressure gradually decreases to 0 as Θ reduces to 0.

However, when a sufficiently large serration exists, the extended surface would provide

additional reflection for a nearby source and stronger noise radiation would occur at

low observer angles (e.g. Θ < 135◦) due to the additional reflection. This implies that

turbulence eddies directly above the surface in the tip plane are more efficient in radiating

noise to low observer angles and therefore are of more relevance for noise suppression.

The effects of serration amplitude can also be studied when the source is located at
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θ = 3π/4 in the tip plane. The results are shown in figure 11. Figure 11(a-b) shows

the directivity patterns for wide serrations of h = 1. Because the source is located at

θ = 3π/4, the scattered pressure by the baseline trailing edge has a large amplitude when

Θ > 45◦ because of surface reflection. When the serrated TE is used, similar reflection

exists and the resulting directivity is therefore similar to the baseline results. As the

frequency increases to k = 50 the behaviour remains largely similar apart from multiple

lobes resulting from the interference. However below Θ = 60◦ we also see a noticeable

noise increase, this again may be explained by the extended surface downstream of the

source. As the serration amplitude further increases, we expect a more pronounced noise

increase. This in fact can be seen in figure 11(c), where a small radiation lobe starts to

appear. At k = 50 the noise enhancement at Θ < 60◦ is more evident. From figure 11(e),

we see a roughly similar behaviour for the longest serration of h = 5. However, we also

note a slightly weaker radiation for Θ > 60◦. This may be due to the fact that part of the

flat plate upstream of the source is removed, therefore weakening a perfect reflection by

a straight TE. Such weakening, however, can be expected to diminish as the frequency

increases leading to increasingly localized scattering, which is indeed the case, as shown

in figure 11(f). When the serration amplitude is large and the source is located in the

close vicinity of the origin, it can be expected the scattered directivity would remain

roughly similar between a source at θ = π/4 and the other at θ = 3π/4. By comparing

figures 10(f) and 11(f) we see this is indeed the case.

Both figures 10 and 11 show that when serrations are used evident noise increase occurs

at some observer angles, which is particularly pronounced at high frequencies. This may

seem somewhat surprising as serrations are in fact used to reduce rather than increase TE

noise. This apparent contradiction arises because the Green’s function developed in this

paper is for a simple acoustic point source, whereas in practical applications the sources

are of a distribution type and characterized by hydrodynamic length scales that are

much shorter than the acoustic wavelengths. It is known that the destructive interference

introduced by serrations, which hinges on the fact that the hydrodynamic fluctuations are

characterized by short length scales, plays a significant role in reducing TE noise (Howe

1991a; Lyu et al. 2016; Jaworski and Peake 2020). Once these hydrodynamic length scales

are taken into account, significant noise reduction can be expected. Therefore, the noise

directivity observed in this paper is not to be confused with that of the total TE noise.

4.2. Effects of the source position

Figures 10 and 11 show the scattered pressure directivity for sound sources located

in the serration tip plane. It would be interesting to understand how the scattering

characteristics change when the spanwise location of the sound source changes. Figure 12

shows the directivity patterns for sound sources at θ = π/4 but at different spanwise

locations when M = 0. Figure 12(a-b) shows the noise directivity for sources located in

y2 = 0. We see that noise is only slightly increased at low observer angles, and similarly
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Figure 12: Far-field directivity patterns of the scattered pressure due to the baseline and

serrated edge of h = 2. The source is located at r = 1 and θ = π/4 in the y2 = 0,

y2 = 0.25 and y2 = 0.75 plane, respectively.

slightly reduced at high angles. This is because the sound sources are located off the

serration tip plate, therefore the additional (weakened) reflection due to the extended

(removed) surface is weaker. Significant noise increase occurs as the source moves to

the tip plane, as explained in figure 10. When the spanwise location moves to 0.5, we

expect the resulting directivity to be identical to that at y2 = 0 due to symmetry. When

the source position moves to y2 = 0.75, i.e. in the serration root plane, the resulting

directivity is shown in figure 12(e-f). It seems surprising to see an even broader lobe

in the range of 45◦ < Θ < 135◦ as the source is not directly above any rigid surface.

However, we note that compare to the baseline trailing edge, there do exist additional

rigid surfaces downstream, albeit slightly off the plane. Besides, constructive interference

may be expected as the two serration teeth are geometrically symmetric with respect to
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Figure 13: Far-field directivity patterns of the scattered pressure due to the baseline and

serrated edge (h = 2). The source is located at θ = π/4 in the y2 = 0.25 plane (tip plane)

and r takes the value of 5, 1 and 0.2, respectively.

y2 = 0.75. If this were true, we would expect a less pronounced noise increase at high

frequencies, because the scattering will become localized and the scattered pressure drops

more rapidly as the frequency increases. This is indeed the case, as shown in figure 12(f).

Apart from varying the spanwise location of the source, we are also interested in the

effects of varying the radial distance in the (y1, y3) plane, i.e.
√
y2

1 + y2
3 . As we consider

the case of M = 0, this distance is the same as r. For baseline TE scattering, the

only characteristic length scale is the sound wavelength (apart from r). Therefore, the

scattering can only depend on the non-dimensional number kr. In other words, decreasing

r would be equivalent to increasing the frequency. The use of serrated trailing edges,

however, introduces two additional lengths scales, i.e. the wavelength and amplitude of

the serration. Therefore, we expect a change in the scattering characteristics as r varies.
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Figure 13 shows the directivity patterns for a sound source located at θ = π/4 but various

r in the tip plane. In particular, figure 13(a-b) shows the scattered directivity when the

source is far from the edge at r = 5. We see that the difference between the straight

and serrated cases is not pronounced. This is expected because the source is relatively

far away from the edge, and therefore the enhanced and weakened reflection due to the

extended or removed surface would not be strong. Considerable change, however, occurs

when the source moves closer to the edge to r = 1, as can be seen from figure 13(c-

d). At this distance, the source effectively sees parts of the reflection surface extended

while others removed, and consequently the noise radiation is amplified or reduced at

low or large observer angles. It is interesting to see that the baseline directivity patterns

in figures 13(a) and 13(d) are identical. Indeed, without the additional length scales

introduced by the serrations, the scattering would only depend on kr, which attains

equal values in both cases. However, when serrations are used, we see that the directivity

patterns are no longer the same even though kr remains identical. In particular, a closer

source leads to more pronounced modifications to the directivity patterns. When the

source continues to move to the close vicinity of the edge, we would expect even more

pronounced effects induced by the serrations. Indeed, comparing figures 13(c-d) and 13(e-

f), we see that the low-angle amplification is substantial. Considering in the serrated case

the point source is immediately above a rigid plate that does not exist in the baseline

case, such strong modifications to the low-angle directivity can be expected.

4.3. Effects of the Mach number

The effect of varying Mach numbers can be similarly studied. Figure 14 shows the far-

field directivity patterns for a sound source located at (cos(3π/4), 0.25, sin(3π/4)) but

with various Mach numbers. The serration has an amplitude of h = 2. Figure 14(a-b)

shows the directivity at M = 0.2. Compared with figure 11(c-d), we see that little change

occurs at such a Mach number in both straight and serrated cases. When we increase

the Mach number to M = 0.5, we start to see that the mean flow tends to increase

the radiation magnitude at side angles (around Θ = 90◦), whereas no amplification or

reduction seems to occur at Θ = 0◦ and Θ = 180◦ at all. The consequence is that the

directivity pattern is effectively squeezed into a thinner lobe. Such a tendency is consistent

between the baseline and serrated cases, and is much more evident at the Mach number

of 0.8, which is shown in figure 14(e-f). For example, we see that the baseline directivity

peaks at around Θ = 90◦ and obtains a value of 1.7, while the pressure magnitude at

Θ = 180◦ remains to be 1.

The fact that convection amplification occurs at side angles instead of forward angles

appears very strange and even contradictory to the well-known Doppler effects. It is well

established that sound is amplified in the forward (Θ < π/2) arc and reduced in the

backward (Θ > π/2) arc by a factor of (1−M cosΘ)−1 when a point source is in motion.

This would also imply that no sound amplification occurs at Θ = 90◦. To understand why
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Figure 14: Far-field directivity patterns of the scattered pressure due to the baseline and

serrated edges at various Mach numbers. The serration has an amplitude of h = 2. The

source is located at r = 1 and θ = 3π/4 in the y2 = 0.25 plane.

such a discrepancy occurs, we start with a simple case that a point source travels from left

to right with a uniform Mach number M . We can choose the coordinate frame to be static

relative to the medium or to the point source. The former is often used in the classical

Doppler analysis while the latter in the TE noise modelling. The instantaneous pressure

field generated by such a moving source can be calculated analytically and plotted in

figure 15, where the Mach number is chosen to be M = 0.5. Note that figure 15 is a

standard result and is only included here for the following illustration purposes.

In the coordinate frame that remains still to the source (e.g. with its origin fixed on the

point source), the acoustic pressure at a fixed distance to the source does not possess the

same phase (see figure 15). However, although not shown here in detail, it can be verified

that the magnitude of the pressure is amplified by β−1 at Θ = 90◦ and remains unchanged
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Figure 15: Instantaneous pressure distribution due to a moving source travelling from

left to right at a Mach number of 0.5. The instantaneous position of the source is shown

by the white circle.

at Θ = 0◦ and 180◦. This is precisely what we observe for our Green’s function, where

the TE noise source effectively remains still at the origin. In fact, the maximal value

obtained at Θ = 90◦ in figure 14(e) is around 1.7 at M = 0.8, and this is consistent with

the amplification ratio of β−1 = 1.67. However, in the coordinate frame that remains

still relative to the medium, we are often interested in measuring the sound at a fixed

distance to its emitting position. Clearly they must have the same phase, as shown for

example by the dark circles in figure 15. Figure 15 clearly shows that the emitted sound

is amplified in the forward arc and reduced in the backward arc. Although not shown

here in detail, it can be readily verified that the amplification ratio shown in figure 15 is

precisely (1−M cosΘ)−1.

In summary, the seemingly strange convective behaviour shown in figure 14 is consistent

with the classical Doppler effects, and the apparent contradiction is due to the use of

a different coordinate frame. This shows that proper corrections have to be applied

when wind tunnel results are used to predict the noise radiation directivity of practical

applications.

5. Conclusion

In this paper, we develop an analytical Green’s function for the acoustic scattering by

serrated edges, which is in a closed form and is applicable to both TE and LE scatterings.

The standard adjoint Green’s function technique is used to formulate the derivation

into a pressure scattering problem under a plane wave incidence. The total pressure

field is then decomposed into an incident, a hypothetically reflected and a reflection-

removed scattered part. The scattered field is subsequently solved using the Wiener-
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Hopf method. It is shown that a recent kernel factorization used in TE and LE noise

modelling appears not uniformly valid, but may be used as a reasonable approximation in

the high frequency regime. Closed-form analytical Green’s functions in the form of Fresnel

integrals are obtained for any arbitrary piecewise linear serrations. Numerical integration

is used to validate the derivations, which shows excellent agreement with the results given

by the analytical formula. The Green’s function is then compared with the scattered

pressure calculated using FEM in COMSOL. The results clearly demonstrate that the

En(s) assumption is problematic at small kh values, but serves as a reasonably good

approximations at large values. The noise directivity patterns are studied as a function

of the frequency, serration amplitude, source position and Mach number, respectively. It

is shown that the use of serrations enhances noise radiation at low observer angles. The

strength of this enhancement increases as the frequency increases. On the other hand,

slight noise weakening may occur at large observer angles, but such effects diminish as the

frequency increases. These directivity changes may be understood from the perspective

of an extended or removed rigid reflection surface, and are therefore more evident when

the source moves closer to the edge. Increasing the Mach number appears to amplify

sound at side angles but not at Θ = 0◦ and Θ = 90◦. This seemingly strange behaviour

is the consequence of using a coordinate frame that is static relative to the TE noise

source.

Due to its analytical nature, the Green’s function can be evaluated quickly. Because of

symmetry, it is applicable to both leading- and trailing-edge scatterings. Such a Green’s

function would be particularly suitable for developing a leading- or trailing-edge noise

model that is both highly efficient and three-dimensionally accurate. More importantly,

with a proper knowledge of the turbulence statistics inside a boundary layer, the Green’s

function may be used to consider the effects of non-frozen turbulence on TE noise and

its reduction using serrations. These form part of our future work.
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Appendix A. Analytical evaluation of H±
n (ri, θi) (n 6= 0)

In order to evaluate (2.31) i.e.

D±n (ri, θi) = −
√

2

κn

∫ ∞
−∞

sin 1
2 (θi + it)

cos(θi + it) + cosΘ±n
eiκnri cosh td t, (A 1)
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we note that

cos(θi + it) + cosΘ±n = 2 cos
1

2
(θi + it+Θ±n ) cos

1

2
(θi + it−Θ±n ), (A 2a)

2 sin
1

2
(θi + it) sin

1

2
Θ±n = cos

1

2
(θi + it−Θ±n )− cos

1

2
(θi + it+Θ±n ). (A 2b)

Making use of (A 2), the integrand in (A 1) can be written as

1

4 sin 1
2Θ
±
n

[
1

cos 1
2 (it+ θi +Θ±n )

− 1

cos 1
2 (it+ θi −Θ±n )

]
(A 3)

and consequently

D±n (ri, θi) = −
√

2

κn

1

sin 1
2Θ
±
n

[
N(θi +Θ±n )−N(θi −Θ±n )

]
, (A 4)

where

N(ψ) =

∫ ∞
−∞

1

4 cos 1
2 (it+ ψ)

eiκnri cosh td t. (A 5)

Equation (A 5) can be evaluated by multiplying both the numerator and denominator

of the integrand by cos 1
2 (it − ψ) and making use of the odd and even properties of the

integrand, resulting in

N(ψ) =

∫ ∞
0

cosh 1
2 t cos 1

2ψ

cosh t+ cosψ
eiκnri cosh td t. (A 6)

Letting τ = sinh 1
2 t and cosh t = 2τ2 + 1, one can show that (Noble 1958)

N(ψ) = e−iκnri cosψ cos
1

2
ψ

∫ ∞
0

ei2κnri(τ
2+cos2 1

2ψ)

τ2 + cos2 1
2ψ

d τ. (A 7)

It is well known that∫ ∞
0

ei2κnri(2τ
2+cos2 1

2ψ)d τ =
1

2
ei2κnri cos2 1

2ψ

√
π

2κnri
e−iπ4 . (A 8)

Integrating both side of (A 8) with respect to ri, one can show that (A 7) can be evaluated

to

N(ψ) = e−iκnri cosψ
√
πe−iπ4 F (

√
2κnri cos

1

2
ψ), (A 9)

where the Fresnel integral F is defined by (2.34). Substituting (A 9) into (A 4), we obtain

the final solution

D±n (ri, θi) = −π
√

2

κn

I(κnri, θi, Θ
±
n )

sin 1
2Θ
±
n

, (A 10)

where function I(κnri, θi, Θ
±
n ) is defined in (2.33). Using the above integral, we can

quickly obtain (2.35).

Appendix B. Analytical evaluation of H0(ri, θi)

When n = 0, (2.26) reduces to

H0(ri, θi) = − i

2h

∫ ∞
−∞

1

(s− k1)2

1√
s− κ0

e(−is cos θi−γ0 sin θi)rid s. (B 1)
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Upon deforming onto P2, one obtains

H0(ri, θi) = − i
√

2κ0κ0h

∫ ∞
−∞

sin 1
2 (θi + it)

(cos(θi + it) + cosΘ0)
2 eiκ0ri cosh td t. (B 2)

In order to evaluate (B 2), we make use of the same trigonometric identity shown in (A 2)

such at

H0(ri, θi) = − i
√

2κ0κ0h

1

sin 1
2Θ0

[
M (θi +Θ0, θi −Θ0)−M (θi −Θ0, θi +Θ0)

]
, (B 3)

where

M(ψ1, ψ2) =

∫ ∞
−∞

1

8 cos2 1
2 (it+ ψ1) cos 1

2 (it+ ψ2)
eiκ0ri cosh td t. (B 4)

To evaluate (B 4), we multiply both the numerator and denominator by cos2 1
2 (it −

ψ1) cos 1
2 (it − ψ2), expand using trigonometric identities and make use of the odd and

even properties of the integrand to rewrite (B 4) as

∫ ∞
0

(1 + cosh t cosψ1)(cosh 1
2 t+ cos 1

2ψ2 − sinh t sinψ1 sinh 1
2 t sin 1

2ψ2)

(cosh t+ cosψ1)2(cosh t+ cosψ2)
eiκ0ri cosh td t.

(B 5)

Let τ = sinh 1
2 t and hence cosh t = 1 + 2τ2, (B 5) reduces to

M(ψ1, ψ2) =

∫ ∞
0

cos(ψ1 + ψ2

2 )τ2 + cos2 ψ1 cos ψ2

2

2(τ2 + cos2 ψ1

2 )2(τ2 + cos2 ψ2

2 )
eiκ0ri(2τ

2+1)d t. (B 6)

Note that the rational expression in the integrand of (B 6) can be expanded in terms of

partial fractions, i.e.

cos(ψ1 + ψ2

2 )τ2 + cos2 ψ1 cos ψ2

2

2(τ2 + cos2 ψ1

2 )2(τ2 + cos2 ψ2

2 )
=

A1

τ2 + cos2 1
2ψ1

+
A2

(τ2 + cos2 1
2ψ1)2

+
A3

τ2 + cos2 1
2ψ2

,

(B 7)

where

A1 =
− cos 1

2ψ2

2 sin2 1
2 (ψ1 − ψ2)

, (B 8a)

A2 =
sin 1

2ψ1 cos2 1
2ψ1

sin 1
2 (ψ1 − ψ2)

, (B 8b)

A3 = −A1. (B 8c)

The first and third partial fractions are similar to (A 7), therefore can be readily evalu-

ated. The second term can be evaluated by integrating (A 8) twice with respect to ri, so
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that the M(ψ1, ψ2) reduces to,

M(ψ1, ψ2) = A1e−iπ4

√
π

cos 1
2ψ1

e−iκ0ri cosψ1F (
√

2κ0ri cos
1

2
ψ1)

+A2e−iπ4

√
π

cos3 1
2ψ1

e−iκ0ri cosψ1

(
2iκ0ri cos2 1

2
ψ1F (

√
2κ0ri cos

1

2
ψ1)

+
1

2

√
2κ0ri cos2

1

2
ψ1ei2κ0ri cos2 1

2ψ1 +
1

2
F (
√

2κ0ri cos
1

2
ψ1)
)

+A3e−iπ4

√
π

cos 1
2ψ2

e−iκ0ri cosψ2F (
√

2κ0ri cos
1

2
ψ2). (B 9)

Substituting (B 9) into (B 3) and collecting common terms, we show that H0(ri, θi)

can be calculated explicitly as

H0(ri, θi) =
iπ

4
√

2κ0κ0h̄

1

sin2 Θ0

2

[
I(κ0ri, θi;Θ0)

sin Θ0

2

− (2iκ0ri)J(κ0ri, θi;Θ0)

cos Θ0

2

−e−iπ4
√
π

2
√

2κ0ri sin
θi
2

eiκ0ri

]
, (B 10)

where the subscript i takes the value of either t or r. The Fresnel function I(κ0ri, θi;Θ0)

is defined in section 2, and J(κ0ri, θi;Θ0) is very similar to I(κ0ri, θi;Θ0), i.e.

J(κ0ri, θi;Θ0) =
1√
π

e−iπ4

[
sin(Θ0 + θi)e

−iκ0ri cos(Θ+θ)F (
√

2κ0ri cos
Θ0 + θi

2
)

− sin(Θ0 − θi)e−iκ0ri cos(Θ0−θi)F (
√

2κ0ri cos
Θ0 − θi

2
)

]
. (B 11)

Appendix C. Green’s function for other piecewise linear serration

profiles

As mentioned in section 2, the Green’s function can be calculated analytically for

arbitrary piecewise linear serrations. For other serration profiles, the scattered Green’s

function Gs can still be written as

Gs(r, θ, y2) =
1

2π
eikMy1/β

2
∞∑

n=−∞
−i(
√
k1 − κn)

×
[∫ ∞
−∞

En(s)

s− k1

1√
s− κn

e(−is cos θ−γn sin θ)rd s

]
, (C 1)

where the integral path is given by P0 as shown in figure 2 and En(s) is defined by (2.15).

For square-shaped serrations

En(s) =
2 sin 1

2nπ

nπ
e−i 12nπ cos[(s− k1)h+

nπ

2
]. (C 2)

Note that En(s) can be readily written as

En(s) =
sin 1

2nπ

nπ
ei 12nπ

(
ei[(s−k1)h−nπ2 ] + e−i[(s−k1)h−nπ2 ]

)
. (C 3)

Equation (C 3) is similar to (2.17) (after trigonometric expansions), and the Green’s func-

tion can be calculated in a similar manner (without performing additional integration)
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to yield

Gs(r, θ, y) =
1

2π
eikMy1/β

2
∞∑

n=−∞
−i(
√
k1 − κn)eiχny2

sin 1
2nπ

nπ
ei 12nπ

×
(

exp
(
−i(k1h̄+

nπ

2
)
)
D0(rt, θt)− exp

(
i(k1h̄+

nπ

2
)
)
D0(rr, θr)

)
, (C 4)

where D0(ri, θi) ≡ D+
0 (ri, θi) ≡ D−0 (ri, θi) is defined in (2.32). Note that D0(ri, θi) does

not depend on n, which is different from that for sawtooth serrations. In fact, we can

show that En(s) for arbitrary piecewise linear serrations can be written in a similar form

as those shown in (C 3), therefore their corresponding Green’s functions can be calculated

similarly in a straightforward manner. We omit a repetitive description here.

Appendix D. An alternative decomposition

When we use the decomposition Ga = pin+Gs instead, the scattered wave Gs(y;x, ω)

satisfies

β2 ∂
2Gs
∂y2

1

+
∂2Gs
∂y2

2

+
∂2Gs
∂y2

3

− 2ikM
∂Gs
∂y1

+ k2Gs = 0, (D 1)

and the following boundary conditions,

∂Gs
∂y3

∣∣∣∣
y3=0

= ik3e−ik1y1/βe
i kM
β2

y1e−ik2y2 , y1 < hF (y2); (D 2a)

Gs|y3=0 = 0, y1 > hF (y2); (D 2b)

Gs|y2=0 = Gs|y2=1eik2 ; (D 2c)

∂Gs
∂y2

∣∣∣∣
y2=0

=
∂Gs
∂y2

∣∣∣∣
y2=1

eik2 . (D 2d)

Eliminating the first-order term in (D 1) by the transformation Gs = Ḡse
ikMy1/β

2

, one

obtains

β2 ∂
2Ḡs
∂y2

1

+
∂2Ḡs
∂y2

2

+
∂2Ḡs
∂y2

3

+

(
k

β

)2

Ḡs = 0, (D 3)

Note here we can use either the non-orthogonal transformation commonly used in

previous works or the simple stretching transformation shown in section 2. The two would

yield identical results. However since section 2 uses the latter, here we choose to use the

former just for comparison. Introducing the non-orthogonal coordinate transformation

ξ1 = (y1 − hF (y2))/β, ξ2 = y2 and ξ3 = y3 yields,

∂2Ḡs
∂ξ2

1

+
∂2Ḡs
∂ξ2

2

+
∂2Ḡs
∂ξ2

3

− 2h̄F ′(ξ2)
∂2Ḡs
∂ξ1∂ξ2

− h̄F ′′(ξ2)
∂Ḡs
∂ξ1

+ h̄2F ′2(ξ2)
∂2Ḡs
∂ξ2

1

+ k̄2Ḡs = 0,

(D 4)

where the stretched constants are defined as h̄ = h/β and k̄ = k/β. Now the boundary
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conditions read

∂Ḡs
∂ξ3

∣∣∣∣
ξ3=0

= ik3e−ik1(ξ1+h̄F (ξ2))e−ik2ξ2 ξ1 < 0; (D 5a)

Ḡs|ξ3=0 = 0, ξ1 > 0; (D 5b)

Ḡs|ξ2=0 = Ḡs|ξ2=1eik2 ; (D 5c)

∂Ḡs
∂ξ2

∣∣∣∣
ξ2=0

=
∂Ḡs
∂ξ2

∣∣∣∣
ξ2=1

eik2 . (D 5d)

We can now perform the Fourier transform along the ξ1 direction, i.e.

G(s, ξ2, ξ3) =

∫ ∞
−∞

Ḡs(ξ1, ξ2, ξ3)eisξ1d ξ1, (D 6)

(D 4) then reduces to

∂2G
∂ξ2

2

+
∂2G
∂ξ2

3

+ 2ish̄F ′(ξ2)
∂G
∂ξ2

+ ish̄F ′′(ξ2)G − s2h̄2F ′2(ξ2)G + (k̄2 − s2)G = 0. (D 7)

Upon use is made of the last two boundary conditions shown in (D 5), (D 7) can be solved

by using the method of separation variables, such that for ξ3 > 0 (the corresponding

result for ξ3 < 0 is similar due to the antisymmetry)

G(s, ξ2, ξ3) =

∞∑
n=−∞

An(s)e−γnξ3e−ish̄F (ξ2)eiχnξ2 , (D 8)

where χn = 2nπ−k2, γn =
√
s2 − κ2

n, and κn =
√
k̄2 − χ2

n. The complex function An(s)

will need to be determined by making use of the first two boundary conditions shown in

(D 5) by using the Wiener-Hopf method, i.e.

G′(s, ξ2, 0) =
k3

(s− k1)

∞∑
n=−∞

En(s)e−ish̄F (ξ2)eiχnξ2 +

∞∑
−∞
G′+n (s)e−ish̄F (ξ2)eiχnξ2 ;(D 9a)

G(s, ξ2, 0) =

∞∑
n=−∞

G−n (s)e−ish̄F (ξ2)eiχnξ2 . (D 9b)

where the symbol ′ denotes the first derivative with respect to ξ3, and G−n (s) and G′+n (s)

are the expansion coefficients of functions G−(s, ξ2, 0) and G′+(s, ξ2, 0) using the basis

functions e−ish̄F (ξ2)eiχnξ2 , n = 0,±1,±2..., and they are unknown at this stage. En can

be found to be

En(s) =

∫ 1

0

ei(k−s)h̄F (ξ2)e−i2nπξ2d ξ2 (D 10)

Making use of orthogonality of the basis functions e−ish̄F (ξ2)eiχnξ2 , n = 0,±1,±2..., we

arrive at the following matching conditions for mode n, i.e.

−γnAn(s) =
k3

(s− k1)
En(s) + G′+n (s); (D 11a)

An(s) = G−n (s). (D 11b)
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We can proceed by eliminating A(s) and arrive at

γnG−n (s) +
k3

s− k1
En(s) + G′n(s) = 0. (D 12)

Again, when En(s) is assumed to be a factor of both G−n (s) and G′+n (s) it becomes a

routine procedure to factorize the kernel as
√
s− κn

√
s+ κn, and

A(s) = G−n (s) =
−k3En(s)

(s− k1)

1√
s− κn

1√
k1 + κn

. (D 13)

With the same definition of r and θ shown in section 2, the scattered pressure field Gs

can be found to be

Gs(r, θ, y) = eikMx/β2
∞∑

n=−∞

−k3eiχny

√
k1 + κn

[
1

2π

∫ ∞
−∞

En(s)

(s− k1)

1√
s− κn

e(−is cos θ−γn sin θ)rd s

]
,

(D 14)

where the integral is along the path P0 shown in figure 2.

Comparing (2.23) and (D 14) we see that when n = 0 the summands in these two

equations are equal to each other. However, for other values of n, the summands differ.

This already signals a problem in the validity of the assumption that En(s) is a factor

in R−n and R′+n , i.e. if such an assumption were true, the two methods should yield

completely identical results.
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