
J. Fluid Mech. (2016), vol. 793, pp. 556–588. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.132

556
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A new analytical model is developed for the prediction of noise from serrated
trailing edges. The model generalizes Amiet’s trailing-edge noise theory to sawtooth
trailing edges, resulting in a complicated partial differential equation. The equation is
then solved by means of a Fourier expansion technique combined with an iterative
procedure. The solution is validated through comparison with the finite element
method for a variety of serrations at different Mach numbers. The results obtained
using the new model predict noise reduction of up to 10 dB at 90◦ above the trailing
edge, which is more realistic than predictions based on Howe’s model and also
more consistent with experimental observations. A thorough analytical and numerical
analysis of the physical mechanism is carried out and suggests that the noise reduction
due to serration originates primarily from interference effects near the trailing edge.
A closer inspection of the proposed mathematical model has led to the development
of two criteria for the effectiveness of the trailing-edge serrations, consistent but
more general than those proposed by Howe. While experimental investigations often
focus on noise reduction at 90◦ above the trailing edge, the new analytical model
shows that the destructive interference scattering effects due to the serrations cause
significant noise reduction at large polar angles, near the leading edge. It has also
been observed that serrations can significantly change the directivity characteristics
of the aerofoil at high frequencies and even lead to noise increase at high Mach
numbers.

Key words: aeroacoustics, noise control, turbulent boundary layers

1. Introduction
The past few decades have seen a rapid growth of air traffic, while the public’s

attention to aircraft noise and its health consequences has also been continuously
increasing. This has led to more stringent regulations for aircraft noise (Casalino
et al. 2008). With regard to the impact of aircraft on community noise, the take-off
and landing processes are of main concern. Among the different mechanisms present
during the landing process, airframe noise is believed to be the dominant component.
It is widely accepted that the broadband noise induced by the interaction of the
boundary layer with the aerofoil trailing edge, known as the turbulent boundary layer

† Email address for correspondence: m.azarpeyvand@bristol.ac.uk
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trailing-edge noise, plays a significant role in the overall airframe noise. Turbulent
boundary layer trailing-edge noise also dominates the noise produced by wind
turbines (Oerlemans et al. 2007). Unless explicitly stated, the turbulent boundary
layer trailing-edge noise will be referred to as trailing-edge noise in the rest of this
paper.

When a turbulent boundary layer convects past the trailing edge, unsteady pressure
with a wavenumber in the hydrodynamic range is scattered into sound (Chase 1975).
Both experiments and theory reveal that the radiated sound power varies with the flow
velocity to the power of 5, which is more efficient, at low Mach numbers, compared
with the power of 8 valid for free stream flows (Lighthill 1952; Williams & Hall
1970).

Different models have been put forward for predicting and understanding trailing-
edge noise. In 1976, Amiet (1976b, 1978) proposed a semi-analytical model in
which the aerofoil is modelled as a flat plate. The model followed Schwarzschild’s
technique to obtain the scattered pressure on the surface of the flat plate, and the
far-field sound was obtained using the surface pressure integral based on the theories
of Kirchhoff and Curle. The model established an analytical relationship between
the far-field sound spectral density and the wavenumber spectral density of the wall
surface pressure under the turbulent boundary layer. Amiet’s model agrees well with
experimental observations, especially at high frequencies (Roger & Moreau 2005). It
should be noted that Amiet’s model assumed that the leading edge of the plate is
infinitely far away from the trailing edge and thus has no effects on the scattered
pressure, which might not be accurate at low frequencies. In 2005, in order to
investigate the leading-edge backscattering effects, Roger & Moreau (2005) extended
Amiet’s model by incorporating the backscattered pressure from the leading edge
and found that when the Helmholtz number kc> 1, the backscattering can be safely
ignored and only at very low frequencies does the backscattering alter the far-field
sound.

As trailing-edge noise dominates the sound generation at low Mach numbers,
different noise reduction techniques have been investigated. Howe proposed a
theoretical model to predict the sound generated by a semi-infinite plate with a
serrated trailing edge of sinusoidal and sawtooth profiles (Howe 1991a,b), see figure 1.
Howe’s models show that sawtooth serrations are more effective in reducing the
trailing-edge noise than sinusoidal ones, and that the use of sharp sawtooth serrations,
i.e. 2h/λ > 8 where 2h and λ are the root-to-tip amplitude and wavelength of the
serration respectively, can lead to significant reduction of trailing-edge noise. More
recently, Azarpeyvand, Gruber & Joseph (2013) carried out an analytical investigation
of trailing-edge noise reduction using serrations of novel profiles, namely sawtooth,
sinusoidal, slitted, slitted–sawtooth and sawtooth–sinusoidal. It was found that the
noise reduction is a sensitive function of the complexity of the serration geometry, and
significant noise reduction can be achieved by applying complex periodic serrations
to the trailing edge. It was also shown that the slitted–sawtooth serration is the most
effective design among the aforementioned serration geometries.

An experimental investigation on trailing-edge serrations was performed by Dassen
et al. (1996). Both aerofoils and flat plates of different shapes were tested in a wind
tunnel. Maxima of 10 dB noise reduction for the flat plates and 8 dB reduction for
the aerofoils were reported, both of which occurred mainly at low frequencies. Later,
Parchen et al. (1999) conducted an experimental investigation of the aeroacoustic
effects of trailing-edge serrations on wind turbine blades at both full and wind-tunnel
scales. An average sound reduction slightly below that reported by Dassen et al. was
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Wall pressure gust

Observer

d

c

FIGURE 1. The schematic of a flat plate with trailing-edge serrations. The plate has a
chord length of c and span of d, and the sawtooth serration has a wavelength of λ and
root-to-tip amplitude of 2h; x′, y′ and z′ denote the streamwise, spanwise and normal to the
plate coordinates respectively. The far-field observer is at (x1, x2, x3) and is also defined by
the polar angle φ and azimuthal angle θ . A wall pressure gust of the form Piae−i(ωt−k1x′−k2y′)

is convecting past the trailing edge of the plate, where k1 and k2 are the streamwise and
spanwise wavenumbers of the gust respectively.

observed. Most recently, Oerlemans et al. (2009) examined and compared the noise
generated by standard, serrated and aeroacoustically optimized aerofoils, but only
2–3 dB noise reduction was achieved for the aerofoil with the serrated trailing edge
at low frequencies. Both Parchen et al. (1999) and Oerlemans et al. (2009) reported
a noise increase at high frequencies.

Gruber (2012) recently conducted an extensive experimental investigation on
the aeroacoustic performance of aerofoils fitted with different sawtooth and novel
serrations. The acoustic measurements were performed to give the sound power
level (SWL) integrated in the mid-span plane. An average of 3–5 dB reduction was
achieved using sharp sawtooth serrations, and a noise increase of up to 5 dB at higher
frequencies was also reported. It was explained that the significant reduction of phase
speed near the sawtooth edges, together with a slight reduction of the coherence of
pressure measured along the edge, is responsible for the sound reduction observed
in experiments. All of the experimental studies, however, indicate that Howe’s model
significantly overpredicts the sound reduction capability of trailing-edge serrations.
This might be caused by the assumptions and approximations used in Howe’s
derivation, which will be discussed in detail in the subsequent sections.

Although different serrations have been used in many applications such as wind
turbines and jet nozzles (Callender, Gutmark & Martens 2005; Yan, Panek & Thiele
2007; Oerlemans et al. 2009), the physical mechanism of the noise reduction remains
poorly understood. Howe’s model gave a first insight into the physics involved, but
the large deviation from experiments suggests that a new and more accurate theory is
needed.

The main objectives of this paper are to develop a new theory to predict the
sound generated from a serrated trailing edge more accurately and to improve our
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understanding of the sound reduction mechanism due to the presence of trailing-edge
serrations. The paper is structured as follows. The new theoretical model for sound
radiation from serrated trailing edges is presented in § 2. Section 3 provides validation
results against finite element solutions. A parametric study is also presented, and the
effects of serrations on trailing-edge noise directivity are also discussed. A comparison
between the new model and Howe’s model is made in § 4. The physical mechanism
of sound reduction using trailing-edge serrations is discussed in § 5, and noise
reduction criteria developed based on the results in § 2 are listed and discussed. A
brief conclusion is given in the last section.

2. Analytical formulation
As in Amiet’s model, the analytical model developed here is based on

Schwarzschild’s technique for the Helmholtz equation with a discontinuous boundary
condition. It is therefore useful to begin by describing this technique. The Schwarzs-
child method (Amiet 1976b; Roger & Moreau 2005) states that if a function f (x, y)
satisfies

∂2f
∂x2
+ ∂

2f
∂y2
+µ2f = 0,

∂f
∂y
(x, 0)= 0, x< 0,

f (x, 0)= g(x), x > 0,

 (2.1)

then, for x< 0,

f (x, 0)= 1
π

∫ ∞
0

√−x
ξ

eiµ(ξ−x)

ξ − x
g(ξ) dξ, (2.2)

where x, y and ξ are real numbers, µ can be a complex parameter and g(x) is a known
function of x.

As shown by Amiet (1976a), the above method can be used to obtain the scattered
pressure field over the surface of the aerofoil.

2.1. The mathematical model
Consider an aerofoil with trailing-edge serrations, modelled as a flat plate as shown in
figure 1, with an infinitesimal thickness and an averaged chord length c and spanwise
length d. Let x′, y′ and z′ denote the streamwise, spanwise and normal to the plate
coordinates respectively. The observer point is located at (x1, x2, x3). The profile
function H(y′) is used to describe the serrated edges. The origin of the coordinates
is chosen in such a way that H(y′) is an oscillatory function of zero mean and that
H(y′) = 0 in the absence of serrations. Figure 1 shows a sawtooth serration with a
root-to-tip amplitude of 2h and a wavelength of λ.

When the sound wavelength is equal to or shorter than the chord length c, the flat
plate can be treated as a semi-infinite plate without a leading edge (Amiet 1976b).
Furthermore, the plate can be considered to be infinite in the spanwise direction
provided that it has a relatively large aspect ratio (typically d/c > 3) (Amiet 1978;
Roger & Carazo 2010). The turbulence inside the boundary layer is assumed to be
frozen, i.e. it remains statistically the same before and after passing over the trailing
edge.

After implementing a spatial and time Fourier transformation, the hypothetical
surface pressure beneath the turbulent boundary layer that would exist when the
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flat plate was infinite can be expressed as an integral of different wall pressure
gust components. The incoming wall pressure gust of frequency ω, as illustrated in
figure 1, takes the form of

pi = Pie−i(ωt−k1x′−k2y′), (2.3)

where Pi is the magnitude of the incident wall pressure gust and k1 and k2 denote the
wavenumbers in the chordwise and spanwise directions respectively.

The sound sources due to the presence of solid boundaries (Curle 1955) can be
modelled as dipoles, in addition to the quadrupoles in free field (Lighthill 1952). As
explained in Amiet’s paper (Amiet 1976b), the incident pressure produces a scattered
field originating from the trailing edge, due to the change in boundary condition at
the wall. The scattered field induces a pressure jump that cancels the incident pressure
jump at the trailing edge and in the wake after the plate (Kutta condition). Thus, the
total pressure can be decomposed into two parts, namely pt = pi + p. The incident
wall pressure is given by (2.3), and the scattered pressure field, p, must satisfy the
following conditions at z′ = 0:

∂p
∂z′
= 0, x′ <H(y′),

p=−Pie−i(ωt−k1x′−k2y′), x′ > H(y′).

 (2.4)

It is worth pointing out that the incident pressure pi defined in (2.3) is twice the
‘conventional incident pressure’ that would exist when the semi-infinite flat plate was
absent. Therefore, the scattered pressure p to be obtained on the upper surface of
the plate would be twice the ‘conventional scattered pressure’ due to the linearity
of the wave equation and (2.4). Since the scattering problem is anti-symmetrical, it
follows that the scattered pressure p is in fact, as in Amiet’s paper (Amiet 1976b),
the scattered pressure jump across the plate. This can be made evident through a more
rigorous analysis.

In the plate-fixed frame {x′, y′, z′}, the flow has a uniform speed U in the streamwise
direction outside the boundary layer, and the wave equation governing the scattered
pressure field p is

∇2p− 1
c2

0

(
∂

∂t
+U

∂

∂x′

)2

p= 0, (2.5)

where c0 denotes the speed of sound. With the assumption of harmonic perturbation,
p= P(x′, y′, z′)e−iωt, the above equation reduces to

β2 ∂
2P
∂x′2
+ ∂

2P
∂y′2
+ ∂

2P
∂z′2
+ 2ikM0

∂P
∂x′
+ k2P= 0, (2.6)

where k=ω/c0, β2 = 1−M2
0 and M0 =U/c0.

In order to make the boundary conditions in (2.4) independent of y′, the coordinate
transformation (Roger, Schram & Santana 2013) x= x′ −H(y′), y= y′, z= z′ is used
and leads to the following differential equation:

(β2+H′2(y))
∂2P
∂x2
+ ∂

2P
∂y2
+ ∂

2P
∂z2
− 2H′(y)

∂2P
∂x∂y

+ (2iM0k−H′′(y)
) ∂P
∂x
+ k2P= 0, (2.7)
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where H′(y) and H′′(y) denote the first and second derivatives of H(y). The boundary
conditions now read

P(x, y, 0)=−Piei(k1x+k2y)eik1H(y), x > 0,

∂P(x, y, 0)/∂z= 0, x< 0.

}
(2.8)

Since the coefficients in (2.7) are y-dependent, the standard ‘separation of variables’
technique cannot be applied to solve this equation. We therefore turn to using a
Fourier expansion technique in the following derivation.

2.2. Fourier expansion
As the scattering problem is periodic in the spanwise direction, one can expand the
scattered pressure field using Fourier series as

P(x, y, z)=
∞∑

n=−∞
Pn(x, z)eik2ny, (2.9)

where k2n = k2 + 2nπ/λ.
Substitution of the above expression into the transformed wave equation, shown

in (2.7), yields{
(β2 +H′2(y))

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
− 2H′(y)

∂2

∂x∂y
+ (2iM0k−H′′(y)

) ∂
∂x
+ k2

}
×

∞∑
n=−∞

Pn(x, z)eik2ny = 0. (2.10)

By multiplying (2.10) by e−ik2n′ y, then integrating it over y from −λ/2 to λ/2, it can
be readily shown that{

β2 ∂
2

∂x2
+ ∂2

∂z2
+ 2ikM0

∂

∂x
+ (k2 − k2

2n′)

}
Pn′(x, z)

+ 1
λ

∫ λ/2
−λ/2

∞∑
n=−∞

{
H′2(y)

∂2

∂x2
− (H′′(y)+ 2ik2nH′(y))

∂

∂x

}
Pn(x, z)ei[2(n−n′)π/λ]y dy= 0.

(2.11)

It should be noted that when both H′(y) and H′′(y) are constant within an entire
sawtooth wavelength, the summation over different modes in (2.11) can be dropped
and we obtain a fully decoupled differential equation for mode n′. However, this
means that the flat plate has a straight or swept trailing edge. For serrations of an
arbitrary profile, both H′(y) and H′′(y) generally depend on y. Thus, (2.11) becomes
a coupled differential equation, i.e. more than one mode appears in each differential
equation. The physical interpretation of this mode coupling will be discussed later.

In this paper, we only focus on the sawtooth serration, which has been shown to be
effective in reducing the trailing-edge noise (Howe 1991b). The method can, however,
also be used for other serrations. Consider a sawtooth centred around the coordinate
origin, and let (χ0, ε0), (χ1, ε1) and (χ2, ε2) be the Cartesian coordinates of the tip
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Flow Joint point

Joint point

Joint point

FIGURE 2. The schematic of sawtooth serrations.

and roots of the sawtooth, as shown in figure 2. The serration profile function H(y)
can therefore be defined as

H(y)=
{
σ0(y− χ0 −mλ)+ ε0, χ0 +mλ< y 6 χ1 +mλ,
σ1(y− χ1 −mλ)+ ε1, χ1 +mλ< y 6 χ2 +mλ,

(2.12)

where σj= (εj+1− εj)/(χj+1− χj), j= 0, 1 and m= 0,±1,±2,±3, . . . . Let σ , defined
as σ = |σj| = 4h/λ, denote the sharpness of the sawtooth serrations. For a sawtooth
profile, as mentioned above, H′(y) is not continuous and H′′(y) is thus singular at
the joint points. We use the conventional generalized function δ(x) to describe the
singularities at these points, i.e.

H′(y)=
{
σ0, χ0 +mλ< y 6 χ1 +mλ,
σ1, χ1 +mλ< y 6 χ2 +mλ,

(2.13a)

H′′(y)=
∞∑

m=−∞
(−1)m+12σδ(y−mλ/2). (2.13b)

By substituting the serration profile function and its derivatives, (2.12) and (2.13),
into the wave equation, (2.11), and making use of the fact that

∫∞
−∞ f (x)δ(x− τ) dx=

f (τ ), we obtain{(
β2 + σ 2

) ∂2

∂x2
+ ∂2

∂z2
+ 2ikM0

∂

∂x
+ (k2 − k2

2n′)

}
Pn′(x, z)

=−4σ
λ

∑
n−n′=odd

(
1− k2λ+ 2nπ

(n− n′)π

)
∂Pn(x, z)
∂x

. (2.14)
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To make the above equation more compact, we write the set of differential equations
obtained above in a matrix form. Let a linear operator

D=
{(
β2 + σ 2

) ∂2

∂x2
+ ∂2

∂z2
+ 2ikM0

∂

∂x

}
(2.15)

and a vector of functions

P = (· · · P−n′(x, z), P−n′+1(x, z), . . . , Pn′−1(x, z), Pn′(x, z), . . .)T , (2.16)

then the coupled equations can be written as

DP − AP = B
∂P
∂x
, (2.17)

where the symbol T in (2.16) represents the transpose of a matrix. The matrices A
and B denote the coefficient matrices of P and ∂P/∂x respectively. Here, Aml and
Bml representing the entries corresponding to mode m in row and l in column of
matrices A and B are

Aml = (k2
2m − k2)δml, Bml =


4σ
λ

m+ l+ k2λ/π

l−m
, m− l is odd,

0, m− l is even,
(2.18a,b)

where δml represents the Kronecker delta. It should be noted that the indices of
matrices A and B are from −m to m and −l to l rather than from 1 to 2m+ 1 and
1 to 2l+ 1 given the fact that the mode numbers are symmetric with respect to 0.

By substituting the profile geometry, (2.12), into the boundary conditions, (2.8), and
performing the same Fourier expansions, one obtains

Pn(x, 0)=−Pianeik1x, x> 0,
∂Pn

∂z
(x, 0)= 0, x 6 0,

 (2.19)

where the an are defined as

an = 1
λ

∫ λ/2
−λ/2

eik1H(y)e−i2nπy/λ dy. (2.20)

In (2.17), as B is not a diagonal matrix, the term B(∂P/∂x) contains coupling terms,
in the sense that different modes, Pn for example, appear in the governing equation
of Pm. This means that every mode is interacting with the other modes and cannot
be solved independently. From the expression of B in (2.18), it can be seen that the
strength of the coupling is proportional to σ/λ. This indicates that sharper serrations
have stronger coupling between different modes. It should also be noted that A is a
diagonal matrix, so if B≈0, i.e. the serrations are very wide, then there is no coupling
effect and one can solve each mode independently.

At very low frequencies, the contribution of higher modes is expected to become
gradually negligible compared with mode 0. Thus, it can be reasonably assumed
that in the case of the governing equation of P0 (mode 0), the coupling with higher
modes is weak and one can solve P0 individually. The coupling effect becomes more
pronounced at high frequencies and for sharp serrations. To solve these coupled
equations at relatively high frequencies, one can use an iterative procedure, to be
introduced in the next section.
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2.3. The iterative solution procedure
2.3.1. Scattered surface pressure

To obtain the scattered surface pressure, (2.17), together with the boundary
conditions in (2.19), needs to be solved. By analogy with the solution of a system of
linear algebraic equations (Süli & Mayers 2003), which can be obtained iteratively,
we shall solve our system of partial differential equations in an iterative manner.

By substituting a known initial value P(0) into the coupling term in (2.17), one can
write

DP − AP = B
∂P(0)

∂x
. (2.21)

Solving (2.21) yields a new set of solutions P(1). By replacing P(0) in (2.21) with
P(1), we obtain a new wave equation,

DP − AP = B
∂P(1)

∂x
. (2.22)

Solving (2.22) gives a new set of solutions P(2). This process is repeated to obtain
a solution sequence, P(0), P(1), P(2), P(3) . . . . If the sequence is convergent, then its
limit satisfies (2.17).

The initial value P(0) used to start the first iteration can be obtained, as mentioned
in the previous section, by ignoring all of the coupling terms, i.e. with B= 0, and by
solving each equation individually via the standard Schwarzschild technique, as shown
in (2.2). The solution to each equation in the decoupled system of equations

DP − AP = 0 (2.23)

can be found as follows.
After use is made of the transformation Pn′ = P̄n′e−ikM0x/(β2+σ 2), the individual

equations in (2.23) reduce to{
(β2 + σ 2)

∂2

∂x2
+ ∂2

∂z2
+K2

n′(β
2 + σ 2)

}
P̄n′ = 0, (2.24)

where
Kn′ =

√
k2(1+ σ 2)− k2

2n′(β
2 + σ 2)/(β2 + σ 2). (2.25)

Making use of X= x, Z=√β2 + σ 2z, one can show that (2.24) reduces to a standard
Schwarzschild problem, and the solution can be found using the Schwarzschild
integral described in (2.2), as

P(0)n′ = Pieik1xan′((1− i)E(−µn′x)− 1), (2.26)

where P(0)n′ is the element of the vector P(0) corresponding to the n′th mode, and

µn′ =Kn′ + k1 + kM0

β2 + σ 2
, (2.27a)

E(x)=
∫ x

0

eit

√
2πt

dt. (2.27b)
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The initial solutions obtained by ignoring all of the coupling terms denote the
decoupled part of the exact solution of each mode, which implies that the nth mode
excitation (x> 0) produces only an nth mode response (x< 0). The iteration procedure
will add a coupled part to the solution of each mode. The coupled part implies that
an nth mode input (x> 0) will also produce some mth mode responses (x< 0), where
m 6= n. It can be expected that the coupling contributions from closer modes will be
stronger than those from remote modes. For sawtooth serrations, as will be shown
in (2.30), the coupling strength decays quadratically with respect to the difference
between their ‘mode numbers’, i.e. |m− l|.

By substituting P(0) into the coupling terms on the right-hand side of (2.17),
one obtains some inhomogeneous equations that can no longer be solved using the
standard Schwarzschild technique. However, if one can transform these equations into
homogeneous ones, then Schwarzschild’s method can again be applied. It should be
noted that P(0) satisfies (2.23); hence, for x 6= 0, where P(0) is first-order continuously
differentiable, the following equation holds:

D
∂P(0)

∂x
− A

∂P(0)

∂x
= 0. (2.28)

Making use of (2.28), (2.21) can be equivalently written as

D
(

P + v
∂P(0)

∂x

)
− A

(
P + v

∂P(0)

∂x

)
= 0, (2.29)

where v is a coefficient matrix whose entries are

vml = Bml

k2
2m − k2

2l
=


−4h
π2(m− l)2

, m− l= odd,

0, m− l= even.
(2.30)

It is worth pointing out that (2.29) only holds when x∈ R and x 6= 0, and in order to
apply the Schwarzschild technique, it must be valid over the whole domain. However,
since the singularity of ∂P(0)/∂x only exists at x = 0, similar to the differentiation
of H(y), we may again make use of the generalized function to account for this
singularity. Let ∂ P̂

(0)
/∂x denote the generalized differentiation, which allows the

presence of generalized functions at the singular point x = 0 but equals ∂P(0)/∂x
elsewhere, then the equation

D
∂ P̂

(0)

∂x
− A

∂ P̂
(0)

∂x
= 0 (2.31)

needs to hold over x ∈ R. The Schwarzschild technique suggests that if (2.31) does
hold, then the routine application of the steps described from (2.24) to (2.26) will
recover the value of ∂P(0)/∂x for x < 0. Thus, one can verify that the intended
∂ P̂

(0)
/∂x can indeed be found as

∂P̂(0)n′

∂x
(x, 0)= ∂P(0)n′

∂x
(x, 0)+ Pian′(1− i)(−√µn′)

√
2πxδ(x), (2.32)
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where ∂P̂(0)n′ /∂x denotes the element of ∂ P̂
(0)
/∂x corresponding to the n′th mode and∫ ∞

0
δ(x) dx= 1

2
. (2.33)

Now, the first iterated solution can be obtained by solving the equation

D

(
P + v

∂ P̂
(0)

∂x

)
− A

(
P + v

∂ P̂
(0)

∂x

)
= 0 (2.34)

via the steps described from (2.24) to (2.26).
Solving (2.34) gives the values of P(1). Continuing this iteration process gives P(2),

P(3) . . . . The exact solutions P can also be expressed as

P(x, 0)= N(x)+ C(1)(x)+ C(2)(x)+ C(3)(x)+ · · · , (2.35)

where N is the non-coupled part, and the coupled parts are denoted by C(i) = P(i) −
P(i−1) (i= 1, 2, 3, . . . ). The entries of N and C(1) corresponding to mode n′ are given
by

Nn′(x)= Pieik1xan′ ((1− i)E(−µn′x)− 1) , (2.36)

C(1)
n′ (x)= Pieik1x(1− i)

∞∑
m=−∞

vn′mam

(
ik1(E(−µn′x)− E(−µmx))

−
√

µm

−2πx
(e−iµn′ x − e−iµmx)

)
. (2.37)

The elements of the second-order function C(2) are provided in appendix A. Since
vml ∝ h it can be readily shown that C(i)

n′ ∝ hi for i= 1, 2, 3, . . .. This means that the
solution presented in (2.35) is a perturbation (Taylor expansion) series with respect to
half of the root-to-tip amplitude h. Therefore, a smaller value of h compared with the
sound wavelength yields faster convergence. It should be noted that the function C(i)

becomes more and more complex as i increases. However, if C(i) vanishes sufficiently
quickly, higher orders can be neglected without causing significant errors. This
appears to be the case for the frequencies relevant to trailing-edge noise, see § 3.2.
By substituting (2.36), (2.37) and (A 2) into (2.35), a second-order approximation of
the exact solutions is obtained.

The scattered surface pressure is obtained by summing Pn′(x, 0) over all different
modes and transforming back to the physical coordinate system, namely

P(x′, y′, 0)=
∞∑

n′=−∞
Pn′(x′ −H(y′), 0)eik2n′ y′ . (2.38)

Here, Pn′ is the solution obtained from the iteration procedure mentioned above,

P(x′, y′, 0)=
∞∑

n′=−∞
(Nn′ +C(1)

n′ +C(2)
n′ + · · ·)(x′ −H(y′))eik2n′ y′, (2.39)

where Nn′ and C(1)
n′ are defined in (2.36) and (2.37), and C(2)

n′ can be found in
appendix A. It should be noted that the terms in the second set of parentheses are
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the arguments for the Nn′ and C(i)
n′ (i= 1, 2, 3, . . .) functions. It is worth pointing out

that in the limiting case when H(y′) = 0, C(i) vanishes, and (2.39) reduces to the
result obtained by Amiet (1976b) for a straight edge.

As shown in (2.39), the scattered pressure field can now be expressed in terms
of an infinite series. By inspection of (2.39), one can show that at sufficiently low
frequencies, i.e. k1h < π2/4, the infinite series is absolutely convergent. At higher
frequencies, the series still appears to be convergent, but to obtain a satisfactory
approximation a higher truncation number and higher-order iterations may be
required. The convergence of the series will be discussed in the following sections
by comparing the far-field sound predicted using different-order approximations.

2.3.2. Far-field sound pressure
As illustrated in figure 1, the observer point is located at (x1, x2, x3) and the flat

plate has an averaged chord length c and span length d. The far-field sound can be
found using the surface pressure integral, as mentioned in Amiet’s model (Lamb 1932;
Curle 1955; Amiet 1975),

pf (x, ω)= −iωx3

4πc0S2
0

∫∫
s
1P(x′, y′)e−ikR dx′ dy′, (2.40)

where 1P= P denotes the pressure jump, S2
0 = x2

1 + β2(x2
2 + x2

3) and

R= M0(x1 − x′)− S0

β2
+ x1x′ + x2y′β2

β2S0
. (2.41)

By substituting the solution obtained in (2.39) into (2.40), the far-field sound
pressure can be expressed as

pf (x, ω, k2)= Pi

(−iωx3c
4πc0S2

0

)
λ

sin((N + 1/2)λ(k2 − kx2/S0))

sin((k2 − kx2/S0)λ/2)
L (ω, k1, k2). (2.42)

Here, 2N + 1 represents the number of sawteeth on the edge, and the far-field sound
gust-response function L is defined as

L (ω, k1, k2) = (1− i)
1
λc

e−ik(M0x1−S0)/β
2
eik(M0−x1/S0)h/β2

×
∞∑

n′=−∞
(Θn′ +Θ (1)

n′ +Θ (2)
n′ + · · ·), (2.43)

with (only the first two terms are given, see more results in appendix A)

Θn′ = an′Qn′n′,

Θ
(1)
n′ =

∞∑
m=−∞

vn′mik1am(Qn′n′ −Qn′m)− vn′m
√
µmam(Sn′n′ − Sn′m).

 (2.44)

The functions Qnm and Snm in the above equations are given by

Qnm =
1∑

j=0

1
κnj

(
1
µA
[eiκnjχj+1Γ (c+ εj+1;µm, µA)− eiκnjχjΓ (c+ εj;µm, µA)]
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− 1
µBnj

eiκnj(χj−(c+εj)/σj)[Γ (c+ εj+1;µm, µBnj)−Γ (c+ εj;µm, µBnj)]
)
, (2.45a)

Snm =
1∑

j=0

1
iκnj

(
1√
ηAm
[eiκnjχj+1E(ηAm(c+ εj+1))− eiκnjχjE(ηAm(c+ εj))]

− 1√
ηBmj

eiκnj(χj−(c+εj)/σj)[E(ηBmj(c+ εj+1))− E(ηBmj(c+ εj))]
)
, (2.45b)

where the function Γ is defined by

Γ (x;µ, ν)= e−iνxE(µx)−
√

µ

µ− νE((µ− ν)x)+ 1
1− i

(1− e−iνx), (2.46)

and
µA = k1 + k(M0 − x1/S0)/β

2,

µBnj = k1 − (k2n − kx2/S0)/σj,

κnj = k2n − kx2/S0 + k(M0 − x1/S0)σj/β
2,

ηAm =Km + kM0/(β
2 + σ 2)− k(M0 − x1/S0)/β

2,

ηBmj =Km + kM0/(β
2 + σ 2)+ (k2n − kx2/S0)/σj.


(2.47)

It should be noted that (2.42) is the far-field sound induced by the scattered pressure
only. When the incident pressure is also incorporated, as pointed out by Amiet (1978),
the number 1 appearing in the parentheses of the function Γ should be omitted, i.e.
the third term on the right-hand side of (2.46) should be replaced by −e−iνx/(1− i).

2.3.3. Statistical formulation
The hypothetical surface pressure of frequency ω beneath a turbulent boundary layer

on the plate surface that would exist when the plate was infinite can be expressed as
a Fourier integral,

Pint(ω, x′, y′)=
∫∫

P̃int(ω, k1, k2)ei(k1x′+k2y′) dk1 dk2. (2.48)

Generally, for a given frequency ω, k1 can have different values (Amiet 1976b).
However, experiments (Willmarth 1959) have shown that Pi(ω, k1, k2) peaks in
the vicinity of k1 = ω/Uc, where Uc denotes the convection velocity of the
wall pressure gusts and is only a weak function of ω. Hence, upon defining
Pi(ω, k2)=

∫∞
−∞ P̃int(ω, k1, k2) dk1, (2.48) reduces to

Pint(ω, x′, y′)=
∫ ∞
−∞

Pi(ω, k2)ei(k̄1x′+k2y′) dk2, (2.49)

where k̄1 =ω/Uc.
As shown in the preceding section, a wall pressure gust of

Pi(ω, k2)ei(k1x′+k2y′) (2.50)

will induce a far-field sound pressure(−iωx3c
4πc0S2

0

)
λ

sin((N + 1/2)λ(k2 − kx2/S0))

sin((k2 − kx2/S0)λ/2)
L (ω, k1, k2)Pi(ω, k2). (2.51)
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Thus, the wall pressure defined by (2.49) will induce a far-field sound pressure of

pf (x, ω)=
(−iωx3c

4πc0S2
0

) ∫ ∞
−∞
λ

sin((N + 1/2)λ(k2 − kx2/S0))

sin((k2 − kx2/S0)λ/2)
L (ω, k̄1, k2)Pi(ω, k2) dk2.

(2.52)
The power spectral density (PSD) of the far-field sound is given by

Spp(x, ω)= lim
T→∞

(π

T
〈pf (x, ω)p∗f (x, ω)〉

)
, (2.53)

where the asterisk denotes a complex conjugate, and 2T is the time length used to
obtain pf (x, ω) by performing Fourier transformation. Substitution of (2.52) into (2.53)
yields

Spp(x, ω)=
(
ωx3c

4πc0S2
0

)2 ∫ ∞
−∞
λ2

(
sin((N + 1/2)λ(k2 − kx2/S0))

sin((k2 − kx2/S0)λ/2)

)2

|L |2 Π(ω, k2) dk2,

(2.54)
where Π(ω, k2) is the wavenumber spectral density (Amiet 1975) of the hypothetical
wall pressure beneath the turbulent boundary layer on the plate surface. For very wide
serrations, i.e. h≈ 0, (2.54) reduces to Amiet’s model (Amiet 1976b). Equation (2.54)
can be simplified by assuming a very large span, i.e. the number of serrations (2N+1)
is sufficiently large. Using the equation

lim
N→∞

λ2 sin2((N + 1/2)λ(k2 − kx2/S0))

sin2((k2 − kx2/S0)λ/2)
∼ 2πd

∞∑
m=−∞

δ(k2 − kx2/S0 + 2mπ/λ), (2.55)

where δ(x) is the conventional generalized function defined in § 2, one can show that
the PSD of the far-field sound in the plane y′ = 0 is given by

Spp(x, ω)=
(
ωx3c

4πc0S2
0

)2

2πd
∞∑

m=−∞

∣∣L (ω, k̄1, 2mπ/λ)
∣∣2 Π(ω, 2mπ/λ). (2.56)

Equation (2.56) is the fundamental result of this paper, and it is interesting to note
that the infinite series in (2.56) appears to be similar to that in Howe’s model shown
in (4.2). For example, both results show that the PSD of far-field sound is related
to the wavenumber spectral density of the surface pressure through Π(ω, 2mπ/λ);
therefore, a skewed wall pressure gust with k2 = 2mπ/λ plays an important role in
sound generation.

2.4. Discussion of the effects of serration geometry
The complicated formulation of the far-field noise (2.56) and the response function
(2.43) makes it very difficult to assess the effectiveness of serrations without numerical
evaluation of the equations. This section attempts to derive two simple conditions for
serrations to obtain effective noise reduction. In order to achieve significant sound
reduction, we wish to minimize (2.56). Since |L (ω, k̄1, 2mπ/λ)|2 is very complex,
we will perform an order analysis first.

Careful examination of (2.43) shows that |L |2 is proportional to 1/|κn′j|2. For
illustration purposes, we assume that the observer is at 90◦ above the trailing edge
in the mid-span plane, i.e. x1 = 0 and x2 = 0, and that the Mach number is low, e.g.
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M0 < 0.2. Then, κmj ≈ 0 when m satisfies k2 + 2mπ/λ ≈ 0, and thus the value of
|L (ω, k̄1,−2mπ/λ)|2 is dominated by mode m, i.e.

|L (ω, k̄1,−2mπ/λ)|2 ≈ 2
λ2c2

∣∣amQmm +Θ (1)
m +Θ (2)

m + · · ·
∣∣2 . (2.57)

Furthermore, noting that vnm = 4h/(π2(n − m)2) when n − m is odd, (2.44) suggests
that Θ (i)

m may be roughly approximated by only summing over modes m−1 and m+1,
since higher orders m± (2j+ 1) with j> 1 are at least one order of magnitude smaller
due to the quadratic term in the denominator of vnm. Using this approximation, Θ (i)

m
varies linearly with am−1 and am+1. From the definition of am in (2.20), it can be
shown that

am = eimπ/2

2
sinc(k1h−mπ/2)+ e−imπ/2

2
sinc(k1h+mπ/2). (2.58)

Therefore, |am−1| and |am+1| are of the order of |am|, and |Θ (i)
m |=O(|am|). From (2.57),

we hence have |L (ω, k̄1,−2mπ/λ)|2 =O(|am|2), and

∞∑
m=−∞

|L (ω, k̄1, 2mπ/λ)|2Π(ω, 2mπ/λ)=O

( ∞∑
m=−∞

|am|2Π(ω, 2mπ/λ)

)
. (2.59)

We are now in a position to discuss the conditions for minimizing (2.59). It is clear
from (2.58) that |am| is maximum when m ≈ ±ν0, where ν0 = 2k1h/π. To minimize
the right-hand side in (2.59), we therefore require that Π(ω, 2mπ/λ)�Π(ω, 0) when
m approaches ±ν0. Assuming frozen turbulence, Π(ω, 2mπ/λ) is given by

Π

(
ω,

2πm
λ

)
= 1

2π

∫ ∞
−∞

Sqq(ω, y′)e−i(2πm/λ)y′ dy′. (2.60)

When 2πν0ly′/λ = k1ly′σ � 1, the integrand in (2.60) for m close to (or larger than)
ν0 oscillates rapidly within the length scale ly′ of Sqq(ω, y′), which corresponds to the
spanwise correlation length given by

ly′(ω)= 1
Sqq(ω, 0)

∫ ∞
−∞

Sqq(ω, y′) dy′. (2.61)

The integral in (2.60) therefore evaluates to a small value compared with Π(ω, 0).
Thus, a condition for noise reduction is that k1he � 1, where we have defined
an effective root-to-tip amplitude 2he = σ ly′ that describes the correlated serration
amplitude.

As 2k1he = k1σ ly′(ω), the decay rate of the spanwise correlation length ly′(ω) with
respect to frequency is critical. If one makes use of Corcos’s correlation length model
(Corcos 1964), ly′(ω)≈ 2.1Uc/ω, k1he will reduce to a constant, in this case 2.1σ , a
sole function of the serration sharpness factor and independent of frequency. This is
consistent with the findings of Howe (1991b). However, if the decay rate were faster
than that given by Corcos, no sound reduction or even some sound increase would
occur at high frequencies. An accurate description of the characteristics of the surface
pressure fluctuation beneath a boundary layer is therefore critical for the model to
accurately predict the sound reduction at high frequencies.
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It should be noted that the condition k1he� 1 is only a necessary condition because
when k1h→ 0 there is no noise reduction. This can be seen from (2.59), since am= 0
when k1h→ 0 except when m= 0, so the right-hand side in (2.59) reduces to Π(ω, 0),
which corresponds to the straight-edge case. From (2.58), for a given integer m away
from ν0, |am| tends to zero when k1h� 1. This provides another necessary condition
for noise reduction. Physically, the root-to-tip amplitude of the serrations must be
sufficient for them to be seen by the incoming hydrodynamic waves.

We have thus obtained two necessary conditions for noise reduction, k1he� 1 and
k1h� 1, which are consistent with those proposed by Howe. These conditions will be
further investigated in § 5.

3. Results
3.1. Model validation

3.1.1. Finite element method implementation
For the coupled differential equations mentioned in the last section, the solutions

are obtained by performing an iterative-solving procedure. In this section, we shall
investigate the validity of the proposed iterative solution using the finite element
method (FEM). Instead of solving the far-field sound directly, costing a significant
amount of computer memory, a feasible alternative is to calculate the near field using
the FEM and obtain the far-field solution by performing a surface integral, as adopted
in analytical models, see (2.40).

In order to make a direct comparison between the computational and analytical
results, the wave equation together with the boundary conditions, given in (2.5)
and (2.4) respectively, will be solved. The governing equation and boundary conditions
in the frequency domain can be written as

β2 ∂
2P
∂x′2
+ ∂

2P
∂y′2
+ ∂

2P
∂z′2
+ 2ikM0

∂P
∂x′
+ k2P= 0,

∂P
∂z′
(x′, y′, 0)= 0, x′ <H(y′),

P(x′, y′, 0)=−Piei(k1x′+k2y′), x′ > H(y′).

 (3.1)

Using the transformation P = P̄e−ikM0x′/β2 , the first-order derivative term, induced by
the background flow, can be eliminated. The results will be transformed back to
the physical domain before making comparisons. The scattered near-field pressure is
obtained by solving (3.1) using the FEM, and the far-field sound pressure is obtained
by integrating the pressure distribution over the surface, as described in (2.40)
and (2.41).

The commercial software COMSOL 4.4 is used to perform the FEM simulations.
Simulations are performed for a single serration, as shown in figure 3. The domain
size is approximately L in the streamwise and L/2 in the vertical direction. The length
L depends on the frequency, while the chord length c over which the surface integral
is performed is kept constant. To eliminate the effect of leading-edge backscattering
and have a fast convergence, L is taken to be at least twice the sound wavelength.
For the boundary conditions, the normal velocity on the surface of the plate vanishes,
while the pressure values are fixed over the wake half-plane (the surface denoted
by ‘wake’) in figure 3. To eliminate the scattering effect of the edge between
the ‘wake’ and its adjacent perfectly matched layer (PML) surfaces, a Gaussian
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PML

PML
PML

PML

PML

L

c

Flat plate
Wake

Floquet periodic boundary

FIGURE 3. (Colour online) Illustration of the FEM computing domain and the boundary
conditions.

PML
PML

PML

0.73

PML

PML

0.10
0.08
0.06
0.04
0.02
0
–0.02
–0.04
–0.06
–0.08
–0.10

–1

FIGURE 4. (Colour online) The computed pressure distribution scattered by a straight
trailing edge at kc= 18 and M0 = 0.1.

weighted pressure is given, as can be seen on the ‘wake’ surface in figure 4. In
addition, as illustrated in figure 3, the walls on both the upper and lower sides
of the computational domain represent Floquet periodic boundary conditions. The
radiation boundary condition is implemented via PMLs, as shown in figure 3. The
mesh is made of tetrahedral cells with quadratic shape functions. The mesh is
highly non-uniform and is generated to accurately resolve the hydrodynamic pressure
fluctuations near the serrated edge and the acoustic pressure perturbation in the far
field. A mesh sensitivity test has been carried out to ensure the proper convergence
of the simulation. In the hydrodynamic region, the mesh contains more than 10
grid points within one hydrodynamic wavelength. The ratio of 16 grid points per
wavelength is used in the far field, relative to the acoustic wavelength. The finest
mesh for the highest frequency contains approximately 3.0 million elements. It should
be noted that at low frequencies (e.g. kc ≈ 1) the computational domain has a very
large aspect ratio, which might cause larger numerical errors.

Figure 4 shows the results for a straight trailing edge at kc ≈ 18 and M0 = 0.1.
The turbulent convection velocity is assumed to be Uc = 0.7U, where U =M0c0. The
wavenumbers are k1= 2πf /Uc, k2= 0 and the amplitude of the incident wall pressure
gust Pi is unity. It can be seen that the PMLs do not cause spurious reflections. As
straight-edge scattering is a 2D problem which is implemented in a 3D domain to
perform FEM sensitivity analysis, a sweep mesh is used to avoid high-aspect-ratio
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problems at low frequencies. The solution was also compared with Amiet’s analytical
solution. The maximum difference at all frequencies (1< kc< 40) was less than 1 %.

3.1.2. Finite element method model validation
This section provides a comprehensive comparison between the analytical model

for gust-induced far-field noise developed in § 2.3.2 and the FEM model developed
in § 3.1.1 for different serrations and at different Mach numbers. The far-field sound
pressure induced by a wall pressure gust of k2 = 0 at different frequencies is chosen
for comparison. It should be noted that in the mathematical model, we use the second-
order approximation of the gust-response function L , as shown in (2.43). The span-
to-chord ratio is chosen to be 8. The Mach number and geometrical shape of the
serrations can vary in different cases.

Results are presented for a range of serrations, as illustrated in figure 5(a–f ). In
this study, we shall only focus on low Mach numbers, i.e. M0 6 0.2. The far-field
pressure, obtained from the FEM model at 90◦ above the trailing edge in the mid-span
plane with x3/c= 1, is plotted as 20 log10 |pf (x, ω)| against the theoretical predictions.
Results are provided for both straight (no serration, i.e. h = 0) and serrated trailing
edges. It can be found that a sound reduction of more than 20 dB can be achieved for
the far-field sound induced by this specific wall pressure gust. This reduction should
not, however, be confused with the sound reduction of the real trailing-edge noise,
which comprises different wall pressure gusts at different values of k2.

Figure 5(a–d) shows good agreement between the theoretical and computational
results. In particular, excellent agreement is achieved for the straight-edge cases at
all frequencies because of their 2D simplicity. The low-frequency discrepancies for
the serrated cases, however, might be due to the error caused by the aforementioned
high-aspect-ratio problems. The serration cases presented in figure 5(a–d) are not
normally considered to be sharp enough, based on experimental observations (Gruber
2012), to reduce the noise significantly. Figures 5(e) and 5( f ) show the results
at M0 = 0.2 for serrations with λ/h = 0.5, h/c = 0.1 and λ/h = 0.3, h/c = 0.1
respectively. It can be seen from these two figures that for sharper serrations, the
average error between the numerical calculations and the theoretical predictions
normally increases, which might be caused by the relatively slower convergence
rate of the second-order approximations of (2.43) compared with that for the wide
serrations. The agreement between the FEM results and the proposed model, however,
is generally good, suggesting that the second-order solution does indeed give a
reasonably good approximation for (2.43). The issue of the convergence of the
iterative method will also be discussed later.

3.2. The far-field sound spectrum
A parametric study of far-field noise reduction was carried out by Howe (1991a,b),
indicating the possibility of significant noise reduction, much higher than measured
data (Gruber 2012). In this section, we shall use the second-order iterative model
developed in § 2 and carry out a parametric study. For illustration purposes, we adopt
Chase’s model (Chase 1987) of the wavenumber spectral density. It is argued by Chase
(1987) that the convection velocity Uc is weakly dependent on the frequency, and on
average Uc ≈ 0.7U. According to Chase’s model, the wavenumber spectral density is
well approximated by

Π(ω, k1, k2)= Cmρ
2
0v

3
∗k

2
1δ

5(
(k1 −ω/Uc)2(δUcv∗/3)2 + (k2

1 + k2
2)δ

2 + χ 2
)5/2 , (3.2)
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FIGURE 5. (Colour online) The trailing-edge noise sound pressure level (SPL) in the mid-
span plane at θ =90◦ and x3/c=1 above the plate, due to a wall pressure gust with k2=0:
(a) M0=0.1,λ/h=6,h/c=0.025; (b) M0=0.2,λ/h=6,h/c=0.025; (c) M0=0.1,λ/h=3,
h/c = 0.05; (d) M0 = 0.1, λ/h = 2, h/c = 0.05; (e) M0 = 0.2, λ/h = 0.5, h/c = 0.1;
( f ) M0 = 0.2, λ/h= 0.3, h/c= 0.1.

where ρ0 is the density of the fluid, and Cm ≈ 0.1553, χ ≈ 1.33, v∗ ≈ 0.03U. The
turbulent boundary layer thickness δ in (3.2) is approximated by (Eckert & Drake
1959)

δ/c= 0.382Re−1/5
c , (3.3)

where Rec is the Reynolds number based on the chord c. An inspection of (3.2) shows
that the wavenumber spectrum peaks around k1 = ω/Uc. Here, we make use of this
fact and obtain Π(ω, k2) by integrating (3.2) with respect to k1 and then keeping the
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leading-order terms (Howe 1991b), which yields

Π(ω, k2)≈ 4Cmρ
2
0v

4
∗(ω/Uc)

2δ4

Uc
(
((ω/Uc)2 + k2

2)δ
2 + χ 2

)2 . (3.4)

By substituting (3.4) into (2.56) and using (ρ0v
2
∗)

2(d/c0) (Howe 1991b) to non-
dimensionalize the far-field PSD we obtain

Spp(x, ω)
(ρ0v2∗)2(d/c0)

= Cm

2π
Ψ (x, ω), (3.5)

where Ψ (x, ω) is defined as

Ψ (x, ω)=
(

x3c
S2

0

)2 (Uc

c0

) ∞∑
m=−∞

∣∣L (ω, k̄1, 2πm/λ)
∣∣2 (ωδ/Uc)

4[
(ωδ/Uc)2 + (2mπδ/λ)2 + χ 2

]2 .

(3.6)
The following figures are plotted using (3.6) for a variety of serration geometrical

parameters. Since much of the experimental work has focused on the trailing-edge
noise at low Mach numbers (Gruber, Joseph & Azarpeyvand 2013), we shall only
focus on low Mach numbers, i.e. M0 6 0.2. The function L in (3.6) is defined
in (2.43), and we take the second-order approximation here. It should be noted
that the incident pressure is also taken into consideration (Amiet 1978). The
observer point is at 90◦ above the trailing edge in the mid-span plane, namely
(x1/c = 0, x2/c = 0, x3/c = 1). It is worth pointing out that in figure 6 both the
far-field sound spectrum and the sound reduction spectrum are shown.

The normalized sound power spectra at M0 = 0.1 for different serrations are
shown in figure 6(a–f ). The spectrum for a serrated trailing edge with 4h/λ = 0.5
is shown in figure 6(a). As expected, the sound reduction is approximately zero
over the entire frequency range of interest. Increasing the sharpness of the serrations
gradually improves the sound reduction performance, as shown in figure 6(b–d). For
sufficiently sharp serrations, significant sound reduction is achieved over a wide range
of frequencies, as shown in figure 6(e), where the sharpness factor is 4h/λ= 10. The
result obtained for a sawtooth serration with λ/h = 0.2, h/c = 0.05 at M0 = 0.1 is
shown in figure 6( f ). Comparison of figures 6(e) and 6( f ) suggests that for already
sharp serrations, further increasing the sharpness can provide a better high-frequency
noise reduction performance, while the low-frequency performance (kc< 10) remains
unchanged. For the sharp serrations presented in figure 6( f ) the far-field sound
is reduced by approximately 10 dB at high frequencies. This agrees better with
experiments, where a noise reduction of up to 7–10 dB is observed (Dassen et al.
1996; Parchen et al. 1999). From figure 6(a,b) it can be found that a slight noise
increase may occur at low frequencies. In fact, the noise increase becomes even more
pronounced at low frequencies when the Mach number is high, e.g. M0 = 0.4. The
explanation of the noise increase at low frequencies will be given in § 5.

The results presented in figure 6 were based on the second-order approximation.
The convergence rate of different-order solutions can be inspected by presenting the
far-field sound spectrum using different-order approximations, as shown in figure 7,
where the far-field spectra using zero-, first- and second-order approximations are
presented. Figure 7(a) presents results for a wide serration with λ/h= 2. As expected,
due to the weak coupling between different modes, the first- and second-order
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FIGURE 6. (Colour online) The normalized spectrum of (3.6) (left axis) for serrated and
straight trailing edges (plotted with solid and dotted blue lines respectively) and the sound
reduction spectrum 1SPL (right axis and green dashed line) for an observer at θ = 90◦
and x3/c = 1 above the plate in the mid-span plane with M0 = 0.1: (a) λ/h = 8, h/c =
0.025; (b) λ/h = 4, h/c = 0.025; (c) λ/h = 2, h/c = 0.05; (d) λ/h = 1, h/c = 0.005; (e)
λ/h= 0.4, h/c= 0.05; ( f ) λ/h= 0.2, h/c= 0.05.

solutions yield almost the same results. It is thus safe to assume that the second-order
approximation gives an accurate solution for wide serrations. Figure 7(b) shows the
convergence results for a narrow serration with λ/h = 0.2. It can be seen that the
difference between the first- and second-order solutions is much smaller than that
between the zero- and first-order ones. The maximum difference between the first-
and second-order approximations at high frequencies is less than 2 dB. Thus, the
second-order solution can be assumed to provide a reasonably accurate solution for
narrow serrations even at high frequencies.

3.3. Directivity patterns
It is a well-established fact that the trailing-edge noise directivity changes with
frequency (Williams & Hall 1970; Gruber et al. 2013). However, the effect of
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FIGURE 7. (Colour online) The normalized spectra for straight and serrated trailing edges
obtained using different-order approximations, for an observer at θ = 90◦ and x3/c = 1
above the plate in the mid-span plane with M0 = 0.1: (a) λ/h = 2, h/c = 0.025;
(b) λ/h= 0.2, h/c= 0.05.

serrations on trailing-edge noise directivity has received very little research attention.
Figures 8 and 9 present the non-dimensional far-field PSD, (3.6), based on the
second-order solution. Results are presented for straight and serrated trailing edges
with λ/h = 0.4 at M0 = 0.1 and 0.4 respectively. As expected, the use of serrations
has little effect on the noise generation at very low frequencies, kc 6 1. The results
show, however, that serrations can effectively reduce the noise at higher frequencies.
As discussed earlier, this is believed to be primarily due to destructive scattering
interference effects. While most experimental investigations (Gruber et al. 2013)
have focused on the capability of serrations to reduce the noise at small angles and
90◦ above the trailing edge, the results in figures 8 and 9 clearly show that serrations
are more effective in reducing the noise at large radiation angles, i.e. towards the
leading edge, θ > 90◦. This is a very interesting result, as noise measurement in the
laboratory environment is often limited to 30◦–120◦ due to the anechoic chamber
room size constraint or reflection by the contraction nozzle, etc. (Gruber 2012;
Moreau & Doolan 2013).

The results have also shown that the use of serrations can lead to significant changes
to the directivity pattern of the scattered pressure field at high frequencies. While one
would expect a cardioid pattern for straight edges at high frequencies, associated with
the edge scattering of a half-plane (Williams & Hall 1970), the results for serrated
trailing edges show that the directivity pattern is more dipolar with a clear peak at a
specific angle which depends on both the serration sharpness and the Mach number.
Numerical study of the directivity pattern for different serrations has shown that the
expected cardioid shape gradually changes to a more dipolar shape as the serration
sharpness increases, and the directivity peak also gradually moves downstream,
towards the trailing edge. The dipolar behaviour of the noise from serrated trailing
edges means that the leading-edge region, θ = 180◦, is much quieter than that for a
straight trailing edge. Increasing the Mach number also appears to move the peak
angle towards the trailing edge, as can be seen by comparing figures 8 and 9. It
is also worth mentioning that in the case of high Mach numbers, see figure 9, the
use of serrations can lead to considerable noise increase in the trailing-edge region
(0◦ < θ < 90◦) for intermediate frequencies, 1< kc< 10.
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FIGURE 8. (Colour online) The directivity patterns plotted against θ in the mid-span plane
(x2= 0 and

√
x2

1 + x2
3/c= 1) at M0= 0.1 for serrations with λ/h= 0.4 and h/c= 0.05. The

far-field sound level in the figures is 10 log10(Ψ (x, ω)/(4× 10−10)): (a) kc= 1; (b) kc= 3;
(c) kc= 5; (d) kc= 10; (e) kc= 20; ( f ) kc= 50.

4. Comparison with Howe’s model

The mathematical model and serration geometrical criteria developed by Howe
have long been used as a tool to evaluate the effectiveness of trailing-edge serrations
and estimate the level of noise reduction (Gruber 2012; Jones & Sandberg 2012;
Azarpeyvand et al. 2013). However, it has repeatedly been shown that Howe’s
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FIGURE 9. (Colour online) The directivity patterns plotted against θ in the mid-span plane
(x2= 0 and

√
x2

1 + x2
3/c= 1) at M0= 0.4 for serrations with λ/h= 0.4 and h/c= 0.05. The

far-field sound level in the figures is 10 log10(Ψ (x, ω)/(4× 10−10)): (a) kc= 1; (b) kc= 3;
(c) kc= 5; (d) kc= 10; (e) kc= 20; ( f ) kc= 50.

model overpredicts the level of noise reduction (Dassen et al. 1996; Parchen et al.
1999; Gruber 2012). To simplify the model, Howe assumes that the Mach number
is sufficiently low to neglect the convection effect, the statistical property of the
turbulence inside the boundary layer remains the same before and after passing the
trailing edge and the diffraction model is based on the Green’s function for straight
trailing edges and the slender-wing approximation.
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FIGURE 10. (Colour online) The normalized spectra of Howe’s model and the new model.
The observer is at 90◦ above the trailing edge in the mid-span plane with x3/c= 1: (a)
λ/h= 0.4, h/c= 0.05,M0 = 0.1; (b) λ/h= 0.2, h/c= 0.05,M0 = 0.1.

With the introduction of Chase’s surface pressure wavenumber spectral density
model, Howe (1991a) shows that the far-field PSD is given by

Spp(ω, x)
(ρ0v2∗)2(d/c0)(δ/|x|)2 =

Cm

π
sin2(θ/2) sin(φ)Ψf (ω), (4.1)

where

Ψf (ω)= 8(h/δ)2
∞∑

m=−∞

(ωh/Uc)
2[(ωh/Uc)

2 + (2mπh/λ)2][1− cos(2ωh/Uc)/ cos(mπ)]
[(2ωh/Uc)2 −m2π2]2[(ωh/Uc)2 + (2mπh/λ)2 + (χh/δ)2]2 .

(4.2)
Even though the assumption of frozen turbulence is used in both models, Howe’s

model differs from the model presented in this paper in several ways. In Howe’s
model, the far-field sound pressure is based on a compact Green’s function. The
Green’s function is obtained by making use of the slender-wing approximation. The
model developed in this paper, however, gives the scattered sound by solving the
convected wave equation. Howe’s model neglects the effects of convection, so it is
only valid at low Mach numbers. The new model is valid for any subsonic Mach
number, as the convection effects have been incorporated in the convected wave
equation. In addition, the new model requires kc > 1, as a semi-infinite chord is
assumed in the derivation.

The figures in this section represent the results obtained using Howe’s model,
i.e. (4.1), and the model developed in this paper, i.e. (3.5). The normalized spectrum
Ψ (x, ω) is defined in the same way as in (3.5). The result of the new model with
the correction applied to the third term in (2.46), according to Amiet (1978), is
to systematically increase the noise level by 6 dB. Figure 10(a) shows the noise
prediction results for a serrated trailing edge with λ/h= 0.4, h/c= 0.05 at M0 = 0.1
using both models. The comparison of the results shows a clear difference between
the two methods. At high frequencies, e.g. kc ≈ 50, Howe’s model gives a sound
reduction of approximately 13 dB, while the new model predicts approximately 7 dB
of noise reduction. Figure 10(b) presents the comparison for sharper serrations, with
λ/h = 0.2, h/c = 0.05 at M0 = 0.1. At kc ≈ 50, the noise reductions predicted by
Howe’s model and the new model are respectively 18 dB and 10 dB. It can be
interpreted from the results that the new model provides a much more realistic noise
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reduction estimate and is more consistent with experimental observations (Dassen
et al. 1996; Parchen et al. 1999; Gruber 2012; Gruber et al. 2013).

It is very interesting to note that the zero-order solution accurately follows Howe’s
solution at high frequencies, as shown in figure 10. At intermediate frequencies, i.e.
2< kc< 20, the zero-order solution oscillates strongly, but the mean value seems to
be following Howe’s result. This is actually not hard to understand, as the Green’s
function used in Howe’s model (Howe 1991a) is in fact only valid locally. In other
words, it does not include the coupling effect between adjacent sawtooth edges. Thus,
at high frequency we expect the zero-order (without the coupling effect induced by
the singular root and tip points) solution to coincide with Howe’s results. The high-
order solution, however, adds the coupled interactions between different modes, and
this coupling effect clearly reduces the sound reduction predicted by the zero-order
solution at high frequencies. Thus, the large overprediction of Howe’s model is likely
to have been caused by the choice of the Green’s function, since the Green’s function
is not able to take the coupling effects into account.

5. Noise reduction mechanism

In order to better understand the noise reduction mechanism, the pressure
distribution over the flat plate surface is presented, see figures 11–14. As mentioned
earlier, the incident pressure only raises the far-field sound by 6 dB systematically,
thus it suffices to consider the scattered pressure distribution only. The scattered
pressure, as mentioned in § 2, is essentially the pressure jump across the flat plate.
As mentioned in § 2.4, the two non-dimensional parameters k1h and k1he play an
important role for effective sound reduction using serrated trailing edges. In what
follows, the scattered pressure distribution will be presented by fixing one parameter
and varying the other. It should be noted that the scattered pressure mentioned here is
due to wall pressure gusts with k2= 0. The discussion, however, also applies to gusts
with k2 6= 0, as the streamwise number k1 has the same value for different gusts.

The scattered pressure on the flat plate is presented in figure 11 for different values
of k1h. The scattered surface pressure is obtained by evaluating the real part of (2.39)
using the second-order approximation (Pi = 1) and then normalizing to unity. The
results presented in figure 11 are obtained for k1he = 7, while k1h varies between
2 and 20. The spanwise coordinate y′ is normalized by the spanwise correlation
length ly′ and the streamwise coordinate x′ is normalized by the hydrodynamic
wavelength λ1 = 2π/k1. Thus, the distance between two adjacent streamwise dashed
lines corresponds to the spanwise correlation length, ly′ . Figure 11(a) plots the
scattered surface pressure distribution near the trailing edge for k1h = 2. It shows
that the scattered surface pressure field between two adjacent streamwise lines is
essentially in phase, so no strong phase variation within ly′ occurs. Figure 11(b)
shows the scattered surface pressure distribution for k1h = 4, and it can seen that
small phase differences appear within a spanwise correlation length. Figure 11(c)
shows the scattered surface pressure distribution for k1h = 10. It is clear that even
if the spanwise correlation length becomes smaller, a pronounced phase difference
still appears within adjacent streamwise lines. Further increasing the value of k1h to
20, as shown in figure 11(d), decreases the spanwise correlation length, but enough
phase difference still appears within the increasingly narrow ranges.

To make the phase variation induced by the presence of serrations even clearer,
the scattered surface pressure along the trailing edge is presented in figure 12. Each
line corresponds to a different value of k1h. The real and imaginary parts of the
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FIGURE 11. (Colour online) The scattered surface pressure distribution at a fixed
frequency for the same k1he = 7: (a) k1h = 2; (b) k1h = 4; (c) k1h = 10; (d) k1h = 20.
The horizontal axis shows the spanwise coordinate normalized by the spanwise correlation
length and the vertical axis shows the streamwise coordinate normalized by the
hydrodynamic wavelength.
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FIGURE 12. (Colour online) The scattered pressure on the serrated edge, with the red
dotted line for k1h = 2, the green dot-dashed line for k1h = 4, the blue dashed line for
k1h= 10 and the black solid line for k1h= 20. (a) Real part; (b) imaginary part.

pressure are shown in figures 12(a) and 12(b) respectively. The two figures are thus
showing the pressure distributions at different instants. The red curve in figure 12(a),
which corresponds to the real part for k1h= 2, remains almost entirely negative. The
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FIGURE 13. (Colour online) The scattered surface pressure distribution for different
serrations at a fixed frequency and k1h= 10: (a) k1he = 1; (b) k1he = 3; (c) k1he = 6; (d)
k1he= 10. The horizontal axis shows the spanwise coordinate normalized by the spanwise
correlation length and the vertical axis shows the streamwise coordinate normalized by the
hydrodynamic wavelength.

corresponding imaginary part, shown in red in figure 12(b), has a phase that slightly
changes sign over ly′ . Since the signal oscillates between the real and imaginary
parts, the phase changes sign only over a small fraction of the cycle. The black
curves corresponding to k1h= 20, on the other hand, show a strong variation within
a spanwise correlation length in both figures 12(a) and 12(b), indicating a strong
phase variation over the whole cycle. Therefore, the phase differences of the scattered
pressure are more likely to be strong and permanent for high values of k1h.

The scattered pressure distributions for different values of k1he are presented in
figure 13. The value of k1h is fixed at 10, while k1he increases from 1 to 10 (see
figure 13a–d). The spanwise and streamwise coordinates are also normalized by ly′

and λ1 respectively. Figure 13(a) presents the scattered surface pressure distribution
for k1he = 1. As k1he is small, the distance between two adjacent dashed lines is
very small compared with the serration wavelength. Thus, even though pronounced
phase differences appear along the edge, one can hardly see any phase variations
within a spanwise correlation length. The pressure distribution for k1he=2 is shown in
figure 13(b), and no significant phase variations are achieved. However, for k1he= 4 a
clear phase variation of the scattered pressure begins to appear within adjacent lines,
as shown in figure 13(c). From figure 13(d), where k1h3 = 10, it can be seen that
pronounced phase differences appear within a correlation length ly′ in the spanwise
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FIGURE 14. (Colour online) The scattered pressure on the serrated edge for different
serration geometries, with the black solid line for k1h3 = 1, the blue dashed line for
k1he = 3, the green dot-dashed line for k1he = 6 and the red dotted line for k1he = 10.
(a) Real part; (b) imaginary part.

direction. To better visualize the phase variation appearing in the spanwise direction
due to serrations, the scattered pressure along the serrated edge is shown in figure 14
for the same values of k1he as in figure 13. Both the real and imaginary parts of the
scattered pressure are presented. The tendency for large values of k1he to favour strong
phase variations is clearly demonstrated.

Finally, one is in a position to discuss the noise reduction mechanism by
investigating the physical implications of the two parameters k1h and k1he. From
figure 11 it is obvious that the criterion k1h� 1 ensures an effective phase variation
appearing along and near the trailing edge in the spanwise direction. In addition,
as shown by figure 13, the condition k1he � 1 ensures that the phase difference
appears within one spanwise correlation length, i.e. between two adjacent dashed
lines shown in figures 11 and 13. Since the surface pressure within the regions
bordered by dashed lines is coherent, and since the range over which the phase
difference appears is clearly much smaller than the acoustic wavelength, the far-field
sound will be reduced due to destructive interference. Physically, this means that
the phase differences induced on the flat plate in the spanwise direction due to the
presence of serrations should be well situated within a correlated turbulent structure.
Therefore, as demonstrated in both figures 11 and 13, the sound reduction is caused
by the destructive interference of the scattered surface pressure due to the presence
of serrations.

The results in § 3.2 have shown that in the case of wide serrations, a noise increase
at low frequencies is also possible, especially at high Mach numbers. The reason
is that at low frequencies, only little phase variation is induced by the presence of
serrated trailing edges in the spanwise direction, but the wetted length of the trailing
edge is in fact much longer than that of a straight one. Thus, the net effect of phase
interference can be constructive, which leads to an increase in the far-field noise. This
is more likely to occur when k1h is small, i.e. M0 is large, the frequency is low or
the serration is wide (small value of h).

Based on the preceding discussion, one can conclude that the minimum effective
serration length required for noise reduction can be obtained from hmin = min(h, he).
It is then straightforward to combine the two conditions stated above into one, i.e.
k1hmin� 1. Therefore, in order to achieve an effective noise reduction in the far field,
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the geometry of the serrations should satisfy k1hmin � 1. Based on the interference
results in figures 11 and 13, it can be found that a common rule of thumb is
k1hmin &π, with a higher value more favourable.

6. Conclusion
A new mathematical model is developed in this paper to predict the sound radiated

by serrated trailing edges. The model begins by establishing an idealized scattering
problem, resulting in a mixed boundary value convective wave equation problem with
complex boundaries. This leads to a set of coupled partial differential equations, which
cannot be solved using the standard separation method. A solution is obtained based
on Fourier expansion to separate the variables and Schwarzschild’s method together
with an iterative technique to solve the resulting coupled equations. The far-field sound
is evaluated using the surface pressure integrals. The PSD of the far-field sound is
related to the wavenumber spectral density of the wall pressure beneath the turbulent
boundary layer near the trailing edge using Amiet’s approach (Amiet 1976b, 1978).

The results obtained using the new model agree well with FEM computations,
suggesting that the model developed in this paper captures the scattering process
and gives correct predictions for the sound generated by serrated trailing edges. It is
shown that the coupling effect must not be ignored, and as a result the new model
can predict the sound reduction more accurately than Howe’s model (Howe 1991a,b).
The results obtained using the new model agree better with experiments, in which the
average sound reduction is reported to be up to approximately 7 dB. The directivity
results show that serrations can significantly reduce the noise in the area near the
leading edge and that at high Mach numbers the use of serrations can lead to noise
increase at small angles.

The physical mechanism for noise reduction is found to be interference effects in
the wall pressure fluctuations due to the presence of serrations. Two non-dimensional
parameters are found to be critical. The first is k1h� 1, to ensure the existence of
strong phase variation in the spanwise direction. The second is k1he � 1, to ensure
that the phase differences along the edges are correlated in the spanwise direction.
The sound reduction generally increases as the serration sharpness increases, but if
the serrations are already sharp enough, further increasing the slope only affects high
frequencies.

The results obtained using Chase’s turbulent boundary layer spectrum model do
not appear to explain the noise increase observed in experiments at high frequencies
(Parchen et al. 1999; Oerlemans et al. 2009; Gruber 2012). This suggests that the
wavenumber–frequency spectra of the surface pressure fluctuations (see § 2.4) are not
accurate or that this noise increase is due to some other mechanisms, such as the
high-intensity flow through serration valleys. In addition, the current model assumes
perfect correlations in the streamwise direction, which may not be sufficiently accurate
according to the measurements of Gruber (2012). Thus, the current model may be
further improved by incorporating more physical parameters such as the streamwise
correlation length.
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Appendix A
A.1. The scattered pressure of the second iteration

The solution after the second iteration can be expressed as

P(2)(x, 0)= N(x)+ C(1)(x)+ C(2)(x), (A 1)

where N(x) and C(1)(x) are defined in § 2, and the entry for C(2)(x) corresponding
to mode n′ is

C(2)
n′ (x) = Pi(1− i)eik1x

∞∑
m=−∞

{
βn′m(ik1)

2(E(−µn′x)− E(−µmx))

− (βn′mik1 + γn′mi(k1 −µm))

√
µm

−2πx
(e−iµn′ x − e−iµmx)

− γn′m

2

(√
µm

−2πx
1

(−x)
(e−iµn′ x − e−iµmx)

− i(µn′ −µm)

√
µm

−2πx
e−iµn′ x

)}
, (A 2)

where

βln =
∞∑

m=−∞
(vlnam − Blman/(k2

2l − k2
2n))vnm, (A 3)

γln =
∞∑

m=−∞
(vlnam

√
µm/µn − Blman/(k2

2l − k2
2n))vnm. (A 4)

A.2. The far-field sound pressure of the second iteration
The function Tnm involved in the second iteration can be defined as

Tnm =
1∑

j=0

1
iκnj

{(
iηAm√
ηAm

(eiκnjχj+1E(ηAm(c+ εj+1))− eiκnjχjE(ηAm(c+ εj)))

− iηBmj√
ηBmj

eiκnj(χj−(c+εj)/σj)(E(ηBmj(c+ εj+1))− E(ηBmj(c+ εj)))

)

−
((

eiκnjχj+1
1√

2π(c+ εj+1)
eiηAm(c+εj+1) − eiκnjχj

1√
2π(c+ εj)

eiηAm(c+εj)

)

− eiκnj(χj−(c+εj)/σj)

(
1√

2π(c+ εj+1)
eiηBmj(c+εj+1) − 1√

2π(c+ εj)
eiηBmj(c+εj)

))}
.

(A 5)
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The second iterated solution falls into the same pattern,

p(2)(x, ω)= −iωx3

4πc0S2
0
Pie−ik(Mx1−S0)/β

2
eik(M−x1/S0)h/β2

(1− i)

× sin((N + 1/2)λ(k2 − kx2/S0))

sin((k2 − kx2/S0)λ/2)

∞∑
n′=−∞

(Θn′ +Θ (1)
n′ +Θ (2)

n′ ), (A 6)

where Θn′ and Θ (1)
n′ are defined in § 2, and

Θ
(2)
n′ =

∞∑
m=−∞

βn′m(ik1)
2(Qn′n′ −Qn′m)

− (βn′m
√
µmik1 + γn′m

√
µmi(k1 −µm))(Sn′n′ − Sn′m)

− γn′m
√
µm(Tn′n′ − Tn′m − i(µn′ −µm)Sn′n′/2). (A 7)
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